Hybrid materials based on cotton fabric-Cu 2 O nanoparticles with antibacterial properties against S. aureus

2017 ◽  
Vol 201 ◽  
pp. 339-343 ◽  
Author(s):  
Wilian Vidotto da Costa ◽  
Bruna da Silva Pereira ◽  
Maiara Camotti Montanha ◽  
Elza Kimura ◽  
Ana Adelina Winkler Hechenleitner ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1586
Author(s):  
Michelina Catauro ◽  
Pavel Šiler ◽  
Jiří Másilko ◽  
Roberta Risoluti ◽  
Stefano Vecchio Ciprioti

The present study investigated the structure, morphology, thermal behavior, and bacterial growth analysis of novel three-component hybrid materials synthesized by the sol-gel method. The inorganic silica matrix was weakly bonded to the network of two organic components: a well-known polymer such as polyethylene glycol (PEG, average molar mass of about 4000 g/mol), and an antioxidant constituted by chlorogenic acid (CGA). In particular, a first series was made by a 50 wt% PEG-based (CGA-free) silica hybrid along with two 50 wt% PEG-based hybrids containing 10 and 20 wt% of CGA (denoted as SP50, SP50C10 and SP50C20, respectively). A second series contained a fixed amount of CGA (20 wt%) in silica-based hybrids: one was the PEG-free material (SC20) and the other two contained 12 and 50 wt% of PEG, respectively (SP12C20 and SP50C20, respectively), being the latter already included in the first series. The X-ray diffraction (XRD) patterns and scanning electron microscope (SEM) images of freshly prepared materials confirmed that all the materials were amorphous and homogeneous regardless of the content of PEG or CGA. The thermogravimetric (TG) analysis revealed a higher water content was adsorbed into the two component hybrids (SP50 and SC20) because of the availability of a larger number of H-bonds to be formed with water with respect to those of silica/PEG/CGA (SPC), where silica matrix was involved in these bonds with both organic components. Conversely, the PEG-rich materials (SP50C10 and SP50C20, both with 50 wt% of the polymer) retained a lower content of water. Decomposition of PEG and CGA occurred in almost the same temperature interval regardless of the content of each organic component. The antibacterial properties of the SiO2/PEG/CGA hybrid materials were studied in pellets using either Escherichia coli and Enterococcus faecalis, respectively. Excellent antibacterial activity was found against both bacteria regardless of the amount of polymer in the hybrids.


2011 ◽  
Vol 332-334 ◽  
pp. 77-80 ◽  
Author(s):  
Chuan Jie Zhang ◽  
Hong Yang ◽  
Yun Liu ◽  
Ping Zhu

Cotton fabric with excellent antibacterial properties was obtained by treated with polyamide-amine (PAMAM) dendrimers as a carrier and silver nitrate as an antibacterial agent. The antibacterial cotton fabrics were prepared by the methods of one-bath process and two-bath process. Antibacterial activity of cotton fabrics treated by two different methods was good, but the antibacterial durability of cotton fabric treated with two-bath process was better than that treated with one-bath process. After 50 washing cycles, cotton fabric treated with two-bath process still had good antibacterial property and its inhibitory rate to Gram-positive S. aureus and Gram-negative E. coli was over 99 %. It was found that the breaking strength retention of finished cotton fabrics was 85.83 % and the decrease of cotton fabrics’ whiteness index was about 15 %.


2011 ◽  
Vol 221 ◽  
pp. 308-315 ◽  
Author(s):  
Zi Ming Yang ◽  
Gen Quan Liang ◽  
Ly Li ◽  
Wai Man Au ◽  
Hui Yi Zhong ◽  
...  

In this paper, a new kind of antibacterial cotton fabric containing patchouli oil microcapsules was investigated. The patchouli oil microcapsules were prepared using a complex coacervation procedure and grafted onto cotton fabric by chemical crosslinking method, along with 1,2,3,4-butanetetracarboxylic acid (BTCA) was utilized as the crosslinking agent. The surface and morphology of fabrics were characterized by using scanning electron microscope (SEM). Fourier transform infrared spectrometry (FTIR) was used to study the formation of ester bonds between BTCA and hydroxyl groups of cotton and patchouli oil microcapsules. The releasing characteristics and antimicrobial durability of the antibacterial fabrics were also investigated by releasing test and laundering test. The results showed that the patchouli oil microcapsules were grafted onto cotton fabric by the role of crosslinking agent BTCA and the treated fabric represented persistent effect, slow releasing performance and washable antibacterial properties. After 30 days, the patchouli oil in the microcapsules was still remained on the fabric and the releasing amount was near 50%. About 72% antibacterial rate of the fabric for staphylococcus aureus and candida albicans could be obtained after washed 30 times, furthermore, no formaldehyde releasing can be found. It is suggested that chemical crosslinking method would provide a potential application in functional finishing by microcapsules for cotton fabric.


2021 ◽  
Vol 11 (19) ◽  
pp. 9311
Author(s):  
Michelina Catauro ◽  
Ylenia D’Errico ◽  
Antonio D’Angelo ◽  
Ronald J. Clarke ◽  
Ignazio Blanco

The aim of this work was the synthesis of hybrid materials of iron (II)-based therapeutic systems via the sol-gel method. Increasing amounts of polyethylene glycol (PEG 6, 12, 24, 50 wt%) were added to SiO2/Fe20 wt% to modulate the release kinetics of the drug from the systems. Fourier-transform infrared (FTIR) spectroscopy was used to study the interactions between different components in the hybrid materials. The release kinetics in a simulated body fluid (SBF) were investigated, and the amount of Fe2+ released was detected via ultraviolet-visible spectroscopy (UV-Vis) after reaction with ortho-phenanthroline. Furthermore, biological characterization was carried out. The bioactivity of the synthesized hybrid materials was evaluated via the formation of a layer of hydroxyapatite on the surface of samples soaked in SBF using spectroscopy. Finally, the potential antibacterial properties of seven different materials against two different bacteria—E. coli and S. aureus—were investigated.


2021 ◽  
Vol 16 ◽  
pp. 155892502110660
Author(s):  
Cuihong Sheng ◽  
Limeng Yang ◽  
Hui Zhang ◽  
Pengfei Zhang ◽  
Guodong Shen

Superhydrophobic antibacterial cotton fabric can be widely applied in outdoor clothing, hospital bedding, and other fields. However, the existing manufacturing methods are difficult or complicated. Herein, a facile and straightforward fabrication strategy is proposed via a one-step hydrothermal method to construct micro-nanometer hierarchical structure with low surface energy on fabric. In an appropriate amount, 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PFOTES) and tetrabutyl titanate (TBT) were mixed in a hydrothermal reactor to generate titanium dioxide. Meanwhile, the PFOTES agent was hydrolyzed and condensed, bonded with titanium dioxide, and finally grafted onto the fiber together. Morphology and elements results demonstrated that the fabric surface was covered by the TiO2 nanoparticles with superhydrophobic coating. The chemical bonds of Si-O-Ti, Ti-O-C, and Ti-O-Ti revealed the structural relationship between TiO2 with PFOTES and cotton fibers. The water contact angle of the fabric obtained can reach to 168°. The fluorinated-TiO2 cotton fabric showed high antibacterial properties in visible light against E. coli and S. aureus. This simple method of preparing superhydrophobic and antibacterial fabric exhibited great potential in the field of functional textiles such as outdoor garments and hospital-related applications.


2018 ◽  
Vol 19 (11) ◽  
pp. 2324-2334 ◽  
Author(s):  
Qingbo Xu ◽  
Panpan Duan ◽  
Yanyan Zhang ◽  
Feiya Fu ◽  
Xiangdong Liu

Sign in / Sign up

Export Citation Format

Share Document