scholarly journals Antibacterial Activity and Iron Release of Organic-Inorganic Hybrid Biomaterials Synthesized via the Sol-Gel Route

2021 ◽  
Vol 11 (19) ◽  
pp. 9311
Author(s):  
Michelina Catauro ◽  
Ylenia D’Errico ◽  
Antonio D’Angelo ◽  
Ronald J. Clarke ◽  
Ignazio Blanco

The aim of this work was the synthesis of hybrid materials of iron (II)-based therapeutic systems via the sol-gel method. Increasing amounts of polyethylene glycol (PEG 6, 12, 24, 50 wt%) were added to SiO2/Fe20 wt% to modulate the release kinetics of the drug from the systems. Fourier-transform infrared (FTIR) spectroscopy was used to study the interactions between different components in the hybrid materials. The release kinetics in a simulated body fluid (SBF) were investigated, and the amount of Fe2+ released was detected via ultraviolet-visible spectroscopy (UV-Vis) after reaction with ortho-phenanthroline. Furthermore, biological characterization was carried out. The bioactivity of the synthesized hybrid materials was evaluated via the formation of a layer of hydroxyapatite on the surface of samples soaked in SBF using spectroscopy. Finally, the potential antibacterial properties of seven different materials against two different bacteria—E. coli and S. aureus—were investigated.

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2270 ◽  
Author(s):  
Michelina Catauro ◽  
Elisabetta Tranquillo ◽  
Federico Barrino ◽  
Ignazio Blanco ◽  
Francesco Dal Poggetto ◽  
...  

The use of oral iron integration is commonly recommended for the treatment of iron deficiency, nevertheless the diagnosis and treatment of this disease could clearly be improved. The aim of this work was the synthesis of therapeutic systems, iron (II) based, by sol-gel method. In an SiO2 matrix, we embedded different weight percentages of polyethylene glycol (PEG6, 12, 24 wt%) and ferrous citrate (Fe(II)C5, 10, 15 wt%) for drug delivery applications. Fourier Transform Infrared (FTIR) spectroscopy was used to study the interactions among different components in the hybrid materials. Release kinetics in a simulated body fluid (SBF) were investigated and the amount of Fe2+ released was detected by Ultraviolet–Visible spectroscopy (UV-VIS) after reaction with ortho-phenantroline. Furthermore, the biological characterization was carried out. The bioactivity of the synthesized hybrid materials was evaluated by the formation of a layer of hydroxyapatite on the surface of samples soaked in SBF using FTIR spectroscopy. Finally, also, the potential antibacterial properties of the different materials against two different bacteria, E. coli and P. aeruginosa, were investigated.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1586
Author(s):  
Michelina Catauro ◽  
Pavel Šiler ◽  
Jiří Másilko ◽  
Roberta Risoluti ◽  
Stefano Vecchio Ciprioti

The present study investigated the structure, morphology, thermal behavior, and bacterial growth analysis of novel three-component hybrid materials synthesized by the sol-gel method. The inorganic silica matrix was weakly bonded to the network of two organic components: a well-known polymer such as polyethylene glycol (PEG, average molar mass of about 4000 g/mol), and an antioxidant constituted by chlorogenic acid (CGA). In particular, a first series was made by a 50 wt% PEG-based (CGA-free) silica hybrid along with two 50 wt% PEG-based hybrids containing 10 and 20 wt% of CGA (denoted as SP50, SP50C10 and SP50C20, respectively). A second series contained a fixed amount of CGA (20 wt%) in silica-based hybrids: one was the PEG-free material (SC20) and the other two contained 12 and 50 wt% of PEG, respectively (SP12C20 and SP50C20, respectively), being the latter already included in the first series. The X-ray diffraction (XRD) patterns and scanning electron microscope (SEM) images of freshly prepared materials confirmed that all the materials were amorphous and homogeneous regardless of the content of PEG or CGA. The thermogravimetric (TG) analysis revealed a higher water content was adsorbed into the two component hybrids (SP50 and SC20) because of the availability of a larger number of H-bonds to be formed with water with respect to those of silica/PEG/CGA (SPC), where silica matrix was involved in these bonds with both organic components. Conversely, the PEG-rich materials (SP50C10 and SP50C20, both with 50 wt% of the polymer) retained a lower content of water. Decomposition of PEG and CGA occurred in almost the same temperature interval regardless of the content of each organic component. The antibacterial properties of the SiO2/PEG/CGA hybrid materials were studied in pellets using either Escherichia coli and Enterococcus faecalis, respectively. Excellent antibacterial activity was found against both bacteria regardless of the amount of polymer in the hybrids.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Phu Hoang Luong ◽  
Thuy Chinh Nguyen ◽  
The Dan Pham ◽  
Do Mai Trang Tran ◽  
Thi Ngoc Lien Ly ◽  
...  

This paper presents the characteristics, morphology, and properties of alginate/chitosan/polyphenol nanoparticles, in which polyphenols were extracted from Camellia chrysantha leaves collected in Tam Dao district, Vinh Phuc province (Vietnam). The alginate/chitosan/polyphenol nanoparticles were prepared by ionic gelation method at different polyphenol content. The characteristics and morphology of these nanoparticles were investigated using infrared spectroscopy (IR), ultraviolet-visible spectroscopy (UV-Vis), and scanning electron microscopy (SEM). Release kinetic of polyphenols from the alginate/chitosan/polyphenol nanoparticles was conducted in simulated human body fluids. The release kinetics of polyphenols from the above nanoparticles were also evaluated and discussed. The experimental results showed that the release process of polyphenols from the nanoparticles was dependent on three factors: time, pH of solution, and amount of polyphenols.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4717 ◽  
Author(s):  
Jelena Pajnik ◽  
Ivana Lukić ◽  
Jelena Dikić ◽  
Jelena Asanin ◽  
Milan Gordic ◽  
...  

In the present study, supercritical solvent impregnation (SSI) has been applied to incorporate thymol into bio-composite polymers as a potential active packaging material. Thymol, a natural component with a proven antimicrobial activity, was successfully impregnated into starch-chitosan (SC) and starch-chitosan-zeolite (SCZ) films using supercritical carbon dioxide (scCO2) as a solvent. Experiments were performed at 35 °C, pressures of 15.5 and 30 MPa, and an impregnation time in the range of 4–24 h. The highest impregnation yields of SC films with starch to chitosan mass ratios of 1:1 and 1:2 were 10.80% and 6.48%, respectively. The addition of natural zeolite (15–60%) significantly increased the loading capacity of films enabling thymol incorporation in a quantity of 16.7–27.3%. FTIR and SEM analyses were applied for the characterization of the films. Mechanical properties and water vapor permeability of films before and after the impregnation were tested as well. Thymol release kinetics in deionized water was followed and modeled by the Korsmeyer-Peppas and Weibull model. SCZ films with thymol loading of approximately 24% exhibited strong antibacterial activity against E. coli and methicillin-resistant Staphylococcus (S.) aureus (MRSA).


2018 ◽  
Vol 6 (20) ◽  
pp. 9480-9488 ◽  
Author(s):  
Eunho Lim ◽  
Hwirim Shim ◽  
Simon Fleischmann ◽  
Volker Presser

In this work, we report on nanosized anatase TiO2/carbon onion hybrid materials (nano-TiO2–C) as a rapid and stable lithium insertion host easily synthesized by tailored sol–gel chemistry.


Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 362
Author(s):  
Bożena Pietrzyk ◽  
Katarzyna Porębska ◽  
Witold Jakubowski ◽  
Sebastian Miszczak

Bacteria existing on the surfaces of various materials can be both a source of infection and an obstacle to the proper functioning of structures. Increased resistance to colonization by microorganisms can be obtained by applying antibacterial coatings. This paper describes the influence of surface wettability and amount of antibacterial additive (Zn) on bacteria settlement on modified SiO2-based coatings. The coatings were made by sol-gel method. The sols were prepared on the basis of tetraethoxysilane (TEOS), modified with methyltrimethoxysilane (MTMS), hexamethyldisilazane (HMDS) and the addition of zinc nitrate or zinc acetate. Roughness and surface wettability tests, as well as study of the chemical structure of the coatings were carried out. The antibacterial properties of the coatings were checked by examining their susceptibility to colonization by Escherichia coli. It was found that the addition of zinc compound reduced the susceptibility to colonization by E. coli, while in the studied range, roughness and hydrophobicity did not affect the level of bacteria adhesion to the coatings.


2012 ◽  
Vol 95 (6) ◽  
pp. 2022-2027
Author(s):  
Anna Kozina ◽  
Karla A. Espinoza ◽  
Emma Ortiz-Islas ◽  
Ignacio A. Rivero

Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 878 ◽  
Author(s):  
Khairul Saharudin ◽  
Srimala Sreekantan ◽  
Norfatehah Basiron ◽  
Yong Khor ◽  
Nor Harun ◽  
...  

Metal oxide-polymer nanocomposite has been proven to have selective bactericidal effects against the main and common pathogens (Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli)) that can cause harmful infectious diseases. As such, this study looked into the prospect of using TiO2/ZnO with linear low-density polyethylene (LLDPE) to inactivate S. aureus and E. coli. The physical, structural, chemical, mechanical, and antibacterial properties of the nanocomposite were investigated in detail in this paper. The production of reactive species, such as hydroxyl radicals (•OH), holes (h+), superoxide anion radicals (O2•¯), and zinc ion (Zn2+), released from the nanocomposite were quantified to elucidate the underlying antibacterial mechanisms. LLDPE/25T75Z with TiO2/ZnO (1:3) nanocomposite displayed the best performance that inactivated S. aureus and E. coli by 95% and 100%, respectively. The dominant reactive active species and the zinc ion release toward the superior antibacterial effect of nanocomposite are discussed. This work does not only offer depiction of the effective element required for antimicrobial biomedical appliances, but also the essential structural characteristics to enhance water uptake to expedite photocatalytic activity of LLDPE/metal oxide nanocomposite for long term application.


Sign in / Sign up

Export Citation Format

Share Document