Durable Antibacterial Finish on Cotton Fabrics with PAMAM/Ag+

2011 ◽  
Vol 332-334 ◽  
pp. 77-80 ◽  
Author(s):  
Chuan Jie Zhang ◽  
Hong Yang ◽  
Yun Liu ◽  
Ping Zhu

Cotton fabric with excellent antibacterial properties was obtained by treated with polyamide-amine (PAMAM) dendrimers as a carrier and silver nitrate as an antibacterial agent. The antibacterial cotton fabrics were prepared by the methods of one-bath process and two-bath process. Antibacterial activity of cotton fabrics treated by two different methods was good, but the antibacterial durability of cotton fabric treated with two-bath process was better than that treated with one-bath process. After 50 washing cycles, cotton fabric treated with two-bath process still had good antibacterial property and its inhibitory rate to Gram-positive S. aureus and Gram-negative E. coli was over 99 %. It was found that the breaking strength retention of finished cotton fabrics was 85.83 % and the decrease of cotton fabrics’ whiteness index was about 15 %.

2014 ◽  
Vol 711 ◽  
pp. 123-128
Author(s):  
Qun Li ◽  
Pei Yao Li ◽  
Xi Hui Zhao ◽  
Xiao Wen Li ◽  
Jian Ping Wang ◽  
...  

An antibacterial agent (ZPU) was prepared by surface modification of nanoZnO with aliphatic aqueous polyurethane (WPU) and polyacrylates sodium of lower molecular weight (LPAA). Then two kinds of cotton fabrics were dipped in ZPU and finally finished by paking-baking process. ZPU and the finished cotton fabrics were characterized by SEM, TEM and DLS. The antimicrobial properties of the cotton fabrics were investigated. The results indicated that ZnO retained nanosize with little aggregation on the fabric surface. The finished cotton fabrics showed obviously antibacterial activity againstS. aureusandE. coliwith the 24 h antibacterial rate of 99%.


2012 ◽  
Vol 512-515 ◽  
pp. 2990-2994
Author(s):  
Su Zhao ◽  
Ying Yu Zhao ◽  
Shuang Liu

La3+/ZnO composite antibacterial agent is made by the combination of Nano-ZnO and Rare Earth LaCl3 whose antibacterial properties are better than Nano-ZnO and Rare Earth LaCl3 themselves, that is, Nano-ZnO whose photocatalysis can be significantly improved by doping La3+,with the obvious coordination function. In this Paper, antibacterial agent was used to prepare the La3+/ZnO Rare Earth compound antibacterial imitation porcelain paint. At the same time, the influence of the antibacterial agent with different amounts and the major component in imitation porcelain paint to antibacterial property are discussed respectively. It shows that, when the antibacterial agent is mixed in the range of 8-9%,the antibacterial property of coating is very satisfactory, the major component of the imitation porcelain paint not only cause no influence on the antibacterial property of the compound antibacterial coating, but also enhances its water resistance and alkali resistance .


2021 ◽  
Vol 16 ◽  
pp. 155892502110034
Author(s):  
Xiongfang Luo ◽  
Pei Cheng ◽  
Wencong Wang ◽  
Jiajia Fu ◽  
Weidong Gao

This study establishes an eco-friendly anti-wrinkle treating process for cotton fabric. Sodium hydroxide-liquid ammonia pretreatment followed by 6% (w/w) PU100 adding citric acid pad-cure-dry finishing. In this process, citric acid (CA) was used as the fundamental crosslinking agent during finishing because it is a non-formaldehyde based, cost-effective and well wrinkle resistance agent. Environmental-friendly waterborne polyurethane (WPU) was used as an additive to add to the CA finishing solution. Six commercial WPUs were systematically investigated. Fabric properties like wrinkle resistance, tensile strength retention, whiteness, durable press, softness, and wettability were well investigated. Fourier transform infrared spectra and X-ray diffraction spectra were also measured and discussed before and after adding waterborne polyurethane. Tentative mechanism of the interaction among the WPU, CA, and modified cotton fabrics is provided. The effect of cotton fabric pretreatment on fabric performance was also investigated. After the eco-process’s treatment, the fabric wrinkle resistant angle was upgraded to 271 ± 7°, tensile strength retention was maintained at 66.77% ± 3.50% and CIE whiteness was elevated to 52.13 ± 3.21, which are much better than the traditional CA anti-wrinkle finishing based on mercerized cotton fabrics. This study provides useful information for textile researchers and engineers.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Katherine R. Hixon ◽  
Tracy Lu ◽  
Sarah H. McBride-Gagyi ◽  
Blythe E. Janowiak ◽  
Scott A. Sell

Purpose. Manuka honey (MH) is an antibacterial agent specific to the islands of New Zealand containing both hydrogen peroxide and a Unique Manuka Factor (UMF). Although the antibacterial properties of MH have been studied, the effect of varying UMF of MH incorporated into tissue engineered scaffolds have not. Therefore, this study was designed to compare silk fibroin cryogels and electrospun scaffolds incorporated with a 5% MH concentration of various UMF.Methods. Characteristics such as porosity, bacterial clearance and adhesion, and cytotoxicity were compared.Results. Pore diameters for all cryogels were between 51 and 60 µm, while electrospun scaffolds were 10 µm. Cryogels of varying UMF displayed clearance of approximately 0.16 cm forE. coliandS. aureus. In comparison, the electrospun scaffolds clearance ranged between 0.5 and 1 cm. A glucose release of 0.5 mg/mL was observed for the first 24 hours by all scaffolds, regardless of UMF. With respect to cytotoxicity, neither scaffold caused the cell number to drop below 20,000.Conclusions. Overall, when comparing the effects of the various UMF within the two scaffolds, no significant differences were observed. This suggests that the fabricated scaffolds in this study displayed similar bacterial effects regardless of the UMF value.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Jia Li ◽  
Bo-Xiang Wang ◽  
Yi-Fan Cui ◽  
Zhi-Cai Yu ◽  
Xu Hao ◽  
...  

Nanosilver particle has been used in the nanofiber mats by mixing the nanosilver with the spinning solution for improving the antibacterial property. Although studies have shown that the antibacterial property of nanofiber mats gets increasing, the higher silver content and the larger released resistance of nanosilver from nanofiber mats are obvious. Here, the electrospinning-combined postdeposition method was used to prepare the nanosilver/sericin/poly(ethylene oxide) (Ag/SS/PEO) nanofiber mats and the bacterial reduction rates againstStaphylococcus aureus(S. aureus) andEscherichia coli(E. coli) were analyzed. We found that the Ag/SS/PEO nanofiber mats were excellent antibacterial properties at the lower silver content and the bacterial reduction rates againstS. aureusandE. coliall reached above 99.99%. Our data suggests that the antibacterial property can be improved by introducing the electrospinning-combined postdeposition method.


2018 ◽  
Vol 89 (5) ◽  
pp. 867-880 ◽  
Author(s):  
Yunping Wu ◽  
Yan Yang ◽  
Zhijie Zhang ◽  
Zhihua Wang ◽  
Yanbao Zhao ◽  
...  

In this paper, we propose a facile and mild route to prepare size-tunable silver nanoparticles (Ag NPs) and their finishing application on fabrication of antibacterial cotton fabrics. The as-prepared Ag NPs, with an average particles size of 2.3 nm, show the minimal inhibitory concentration of 7.8 µg/mL and the minimum bactericidal concentration of 15.6 µg/mL, respectively. In this study, sodium citrate served as a stabilizing agent to prevent Ag NP agglomeration in the synthesis process, and citric acid acted as a binder to fix Ag NPs on the cotton fabrics through chemical bonds in the finishing process. The results of Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy (UV-vis), X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy demonstrate that Ag NPs have been fixed and well dispersed on the cotton fabric surface. Ag contents in the hybrid fabrics were measured by the techniques of inductively coupled plasma atomic emission spectroscopy and UV-vis, and the antibacterial properties of hybrid fabrics were tested by the shake flask and agar diffusion plate method. It is found that the Ag NP coated cotton fabrics exhibit excellent antimicrobial activities against both the Gram-negative bacterium of Escherichia coli (E. coli) and the Gram-positive bacterium of Staphylococcus aureus ( S. aureus). The percentages of reduction bacteria remain at 91.8% and 98.7% for S. aureus and E. coli, respectively, even after 50 cycles of consecutive laundering, which indicates that the antibiotic performance of the as-fabricated hybrid fabrics is also durable.


Author(s):  
Patil Tejaswini D. ◽  
Amrutkar Sunil V.

Background: DNA gyrase subunit B (1KZN) is an attractive target for antibacterial drug development because of its role in DNA replication. The fast development of antimicrobial medication resistance necessitates the quick discovery of new antimicrobial medicines. Objective: The goal of this research is to design, synthesize, and discover benzo-fused five-membered nitrogen-containing heterocycles that bind to DNA gyrase subunit B via molecular docking (1KZN). Methods: Based on literature research, 2-(1H-1,2,3-Benzotriazol-1-yl)-N-substituted acetamide was synthesized using an efficient method. All synthesized compounds were evaluated for antibacterial activity against three distinct organisms: E. coli, Pseudomonas aeruginosa, Staphylococcus aureus. In a docking investigation, the chemical interacts with the active site of DNA gyrase subunit B (1KZN), indicating that it might have antibacterial action. Conclusion: According to the findings of this research, the compounds 3d and 3f show antibacterial properties. For Staphylococcus aureus, 3c has the potential to be an antibacterial agent.


2020 ◽  
Vol 7 (2) ◽  
pp. 13-18
Author(s):  
Meng Zhang ◽  
Yan Zhang ◽  
Xuehong Ren ◽  
Tung-Shi Huang

To obtain antibacterial properties for colored cotton fabrics, vat dyes were chosen to dye cotton because they can avoid serious discoloration during chlorination. In this study, we synthesized a reactive N-halamine precursor, 4-(4-(2,2,6,6-tetramethyl-4-piperidinol)-6-chloro-1,3,5-triazinylamino)-benzenesulfonate (BTMPT), and coated it on colored cotton fabrics that were dyed with three different vat dyes. The optimum pH for chlorination of the treated cotton fabrics was investigated. Chlorination at pH 11 achieved a small color difference and greater than 0.2% of active chlorine loading. When challenged, the chlorinated fabrics inactivated all inoculated Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) within 5 min. The treated cotton fabric had greater breaking strength than those treated with the traditional process, as well as good washing stability.


2018 ◽  
Vol 34 (4) ◽  
pp. 2026-2030 ◽  
Author(s):  
Sarrah Sattar Jabbar

In search of novel antibacterial agent, a series of new isatin derivatives (3a-d) have been synthesized by condensation isatin (2,3-indolinendione) with piperidine (hexahydropyridine), hydrazine hydrate and Boc-amino acids respectively. Compounds synthesized have been characterized by IR spectroscopy and elemental analysis. In addition, the in vitro antibacterial properties have been tested against E. coli, P. aeruginosa, and Bacillus cereus, S. aureus by employing the well diffusion technique. A majority of the synthesized compounds were showing good antibacterial activity and from comparisons of the compounds, compound 3d has been determined to be the most active compound.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2010 ◽  
Author(s):  
Guangyu Zhang ◽  
Dao Wang ◽  
Jiawei Yan ◽  
Yao Xiao ◽  
Wenyan Gu ◽  
...  

Herein, the amino-capped TiO2 nanoparticles were synthesized using tetrabutyl titanate and amino polymers by a two-step sol-gel and hydrothermal method technique for the fabrication of functional cotton fabric. The prepared TiO2 nanoparticles and the treated cotton fabric were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), field emission scanning electron microcopy (FE-SEM) photocatalytic and antibacterial measurement. The results indicate the typical characteristic anatase form of the amino-capped TiO2 NPs with an average crystallite size of 14.9 nm. The treated cotton fabrics exhibit excellent antibacterial property and good photocatalytic degradation of methylene blue.


Sign in / Sign up

Export Citation Format

Share Document