Preparation of Antibacterial Cotton Fabric Containing Patchouli Oil Microcapsules by Chemical Crosslinking Method

2011 ◽  
Vol 221 ◽  
pp. 308-315 ◽  
Author(s):  
Zi Ming Yang ◽  
Gen Quan Liang ◽  
Ly Li ◽  
Wai Man Au ◽  
Hui Yi Zhong ◽  
...  

In this paper, a new kind of antibacterial cotton fabric containing patchouli oil microcapsules was investigated. The patchouli oil microcapsules were prepared using a complex coacervation procedure and grafted onto cotton fabric by chemical crosslinking method, along with 1,2,3,4-butanetetracarboxylic acid (BTCA) was utilized as the crosslinking agent. The surface and morphology of fabrics were characterized by using scanning electron microscope (SEM). Fourier transform infrared spectrometry (FTIR) was used to study the formation of ester bonds between BTCA and hydroxyl groups of cotton and patchouli oil microcapsules. The releasing characteristics and antimicrobial durability of the antibacterial fabrics were also investigated by releasing test and laundering test. The results showed that the patchouli oil microcapsules were grafted onto cotton fabric by the role of crosslinking agent BTCA and the treated fabric represented persistent effect, slow releasing performance and washable antibacterial properties. After 30 days, the patchouli oil in the microcapsules was still remained on the fabric and the releasing amount was near 50%. About 72% antibacterial rate of the fabric for staphylococcus aureus and candida albicans could be obtained after washed 30 times, furthermore, no formaldehyde releasing can be found. It is suggested that chemical crosslinking method would provide a potential application in functional finishing by microcapsules for cotton fabric.

2020 ◽  
pp. 004051752094296
Author(s):  
Jiangfei Lou ◽  
Jiugang Yuan ◽  
Qiang Wang ◽  
Ping Wang ◽  
Jin Xu ◽  
...  

Polyaldehyde trehalose (OTr) was prepared and applied to cotton fabric as an anti-crease finishing agent under Lewis acid conditions. OTr contains reactive groups (aldehyde groups) and hydrophilic groups (hydroxyl groups). After the aldehyde groups crosslink with the hydroxyl groups of the fibers, the hydroxyl groups of the OTr improve the hydrophilicity of the finished fabric. The target product was characterized by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance. The optimum process conditions for anti-crease finishing were studied. The optimal anti-crease finishing process for OTr was 10.0%, a MgCl2 concentration of 2.0%, a pH of 3, and curing for 3 min at 150℃. The efficiency of the OTr-treated cotton fabrics was examined, and the anti-crease property, whiteness, tensile strength, hydrophilicity, and staining property of the OTr and conventional anti-crease finishing reagents were compared. The anti-crease property, whiteness, and tensile strength of the OTr-treated fabric improved significantly, but were lower than those of the butane tetracarboxylic acid and glutaraldehyde. Fabric that was treated with the new prepared agent presented a satisfactory hydrophilicity, which indicates that OTr can be used as an effective hydrophilic crosslinking agent.


2013 ◽  
Vol 8 (3) ◽  
pp. 155892501300800
Author(s):  
Ali Nazari ◽  
Majid Montazer ◽  
Mohammad Bameni Moghadam ◽  
Mohammad Esmail Yazdanshenas

The application of Butane tetra carboxylic acid/nano titanium dioxide [(BTCA)/Nano TiO2 (NTO)] on cotton fabric has been used to cross-linked cellulose, and yield higher NTO absorption and enhanced self-cleaning properties. In this research, the synergistic effect of BTCA and NTO on antibacterial properties of the cotton fabric was investigated. The NTO particles were stabilized on the cotton surface using BTCA. Then, different curing conditions (UV, Temp, and UV-Temp) were examined. The treated fabrics indicated an antibacterial activity against both Staphylococcus aureus and Escherichia coli bacteria. The role of both BTCA and NTO concentrations on antibacterial properties of the cotton fabric were investigated using response surface methodology (RSM). Also, X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) were employed to confirm the NTO particles on the cotton surface. Cotton fabric treated with optimum concentration of NTO and BTCA obtained enhanced antibacterial properties.


1980 ◽  
Vol 45 (2) ◽  
pp. 427-434 ◽  
Author(s):  
Kveta Heinrichová ◽  
Rudolf Kohn

The effect of exo-D-galacturonanase from carrot on O-acetyl derivatives of pectic acid of variousacetylation degree was studied. Substitution of hydroxyl groups at C(2) and C(3) of D-galactopyranuronic acid units influences the initial rate of degradation, degree of degradation and its maximum rate, the differences being found also in the time of limit degradations of the individual O-acetyl derivatives. Value of the apparent Michaelis constant increases with increase of substitution and value of Vmax changes. O-Acetyl derivatives act as a competitive inhibitor of degradation of D-galacturonan. The extent of the inhibition effect depends on the degree of substitution. The only product of enzymic reaction is D-galactopyranuronic acid, what indicates that no degradation of the terminal substituted unit of O-acetyl derivative of pectic acid takes place. Substitution of hydroxyl groups influences the affinity of the enzyme towards the modified substrate. The results let us presume that hydroxyl groups at C(2) and C(3) of galacturonic unit of pectic acid are essential for formation of the enzyme-substrate complex.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. Precisvalle ◽  
A. Martucci ◽  
L. Gigli ◽  
J. R. Plaisier ◽  
T. C. Hansen ◽  
...  

AbstractTopaz [Al2SiO4(F,OH)2] is one of the main fluorine-bearing silicates occurring in environments where variably acidic (F)/aqueous (OH) fluids saturate the silicate system. In this work we fully characterized blue topaz from Padre Paraíso (Minas Gerais, Brazil) by means of in situ synchrotron X-Ray and neutron powder diffraction measurements (temperature range 298–1273 K) combined with EDS microanalyses. Understanding the role of OH/F substitution in topaz is important in order to determine the hydrophilicity and the exchange reactions of fluorine by hydroxyl groups, and ultimately to characterize the environmental redox conditions (H2O/F) required for mineral formation. The fluorine content estimated from neutron diffraction data is ~ 1.03 a.f.u (10.34 wt%), in agreement with the chemical data (on average 10.0 wt%). The XOH [OH/(OH + F)] (0.484) is close to the maximum XOH value (0.5), and represents the OH- richest topaz composition so far analysed in the Minas Gerais district. Topaz crystallinity and fluorine content sharply decrease at 1170 K, while mullite phase starts growing. On the basis of this behaviour, we suggest that this temperature may represent the potential initial topaz’s crystallization temperature from supercritical fluids in a pegmatite system. The log(fH2O/fHF)fluid (1.27 (0.06)) is coherent with the fluorine activity calculated for hydrothermal fluids (pegmatitic stage) in equilibrium with the forming mineral (log(fH2O/fHF)fluid = 1.2–6.5) and clearly different from pure magmatic (granitic) residual melts [log(fH2O/fHF)fluid < 1]. The modelled H2O saturated fluids with the F content not exceeding 1 wt% may represent an anomalous water-dominant / fluorine-poor pegmatite lens of the Padre Paraíso Pegmatite Field.


2021 ◽  
Vol 16 ◽  
pp. 155892502110034
Author(s):  
Xiongfang Luo ◽  
Pei Cheng ◽  
Wencong Wang ◽  
Jiajia Fu ◽  
Weidong Gao

This study establishes an eco-friendly anti-wrinkle treating process for cotton fabric. Sodium hydroxide-liquid ammonia pretreatment followed by 6% (w/w) PU100 adding citric acid pad-cure-dry finishing. In this process, citric acid (CA) was used as the fundamental crosslinking agent during finishing because it is a non-formaldehyde based, cost-effective and well wrinkle resistance agent. Environmental-friendly waterborne polyurethane (WPU) was used as an additive to add to the CA finishing solution. Six commercial WPUs were systematically investigated. Fabric properties like wrinkle resistance, tensile strength retention, whiteness, durable press, softness, and wettability were well investigated. Fourier transform infrared spectra and X-ray diffraction spectra were also measured and discussed before and after adding waterborne polyurethane. Tentative mechanism of the interaction among the WPU, CA, and modified cotton fabrics is provided. The effect of cotton fabric pretreatment on fabric performance was also investigated. After the eco-process’s treatment, the fabric wrinkle resistant angle was upgraded to 271 ± 7°, tensile strength retention was maintained at 66.77% ± 3.50% and CIE whiteness was elevated to 52.13 ± 3.21, which are much better than the traditional CA anti-wrinkle finishing based on mercerized cotton fabrics. This study provides useful information for textile researchers and engineers.


2021 ◽  
Vol 22 (2) ◽  
pp. 500
Author(s):  
Marina Ferrer ◽  
Mònica Aguilera ◽  
Vicente Martinez

Rifaximin is a broad-spectrum antibiotic that ameliorates symptomatology in inflammatory/functional gastrointestinal disorders. We assessed changes in gut commensal microbiota (GCM) and Toll-like receptors (TLRs) associated to rifaximin treatment in mice. Adult C57BL/6NCrl mice were treated (7/14 days) with rifaximin (50/150 mg/mouse/day, PO). Luminal and wall-adhered ceco-colonic GCM were characterized by fluorescent in situ hybridization (FISH) and microbial profiles determined by terminal restriction fragment length polymorphism (T-RFLP). Colonic expression of TLR2/3/4/5/7 and immune-related markers was assessed (RT-qPCR). Regardless the period of treatment or the dose, rifaximin did not alter total bacterial counts or bacterial biodiversity. Only a modest increase in Bacteroides spp. (150 mg/1-week treatment) was detected. In control conditions, only Clostridium spp. and Bifidobacterium spp. were found attached to the colonic epithelium. Rifaximin showed a tendency to favour their adherence after a 1-week, but not 2-week, treatment period. Minor up-regulation in TLRs expression was observed. Only the 50 mg dose for 1-week led to a significant increase (by 3-fold) in TLR-4 expression. No changes in the expression of immune-related markers were observed. Rifaximin, although its antibacterial properties, induces minor changes in luminal and wall-adhered GCM in healthy mice. Moreover, no modulation of TLRs or local immune systems was observed. These findings, in normal conditions, do not rule out a modulatory role of rifaximin in inflammatory and or dysbiotic states of the gut.


2011 ◽  
Vol 332-334 ◽  
pp. 77-80 ◽  
Author(s):  
Chuan Jie Zhang ◽  
Hong Yang ◽  
Yun Liu ◽  
Ping Zhu

Cotton fabric with excellent antibacterial properties was obtained by treated with polyamide-amine (PAMAM) dendrimers as a carrier and silver nitrate as an antibacterial agent. The antibacterial cotton fabrics were prepared by the methods of one-bath process and two-bath process. Antibacterial activity of cotton fabrics treated by two different methods was good, but the antibacterial durability of cotton fabric treated with two-bath process was better than that treated with one-bath process. After 50 washing cycles, cotton fabric treated with two-bath process still had good antibacterial property and its inhibitory rate to Gram-positive S. aureus and Gram-negative E. coli was over 99 %. It was found that the breaking strength retention of finished cotton fabrics was 85.83 % and the decrease of cotton fabrics’ whiteness index was about 15 %.


Sign in / Sign up

Export Citation Format

Share Document