Silica coated expanded polystyrene/cement composites with improved fire resistance, smoke suppression and mechanical strength

2020 ◽  
Vol 240 ◽  
pp. 122190 ◽  
Author(s):  
Zhengzhou Wang ◽  
Zhenyu Huang ◽  
Ting Yang
2013 ◽  
Vol 774-776 ◽  
pp. 747-752 ◽  
Author(s):  
Yue Fang Zhang ◽  
Wan Jun Hao ◽  
Bao Yi Li ◽  
Yu Ping Duan ◽  
Shun Hua Liu

This paper reported that, using the method of double layer composite successfully prepared high performance of electromagnetic wave absorption materials. Such a composite is composed of a cement matching layer filled with expanded polystyrene (EPS) beads and an absorbing cement layer made of EPS beads and carbon black. The samples were tested by arching method in the frequency range of 8~18GHz. The reflectivities were revealed to be excellent, the lowest being-17dB. The new material can be used for building indoor electromagnetic radiation protection.


2018 ◽  
Vol 3 (4) ◽  
pp. 187-196 ◽  
Author(s):  
Grahmm A. Funk ◽  
Jonathan C. Burkes ◽  
Kimberly A. Cole ◽  
Mohamed N. Rahaman ◽  
Terence E. McIff

Abstract. Introduction: Local delivery of antibiotics using bone cement as the delivery vehicle is an established method of managing implant-associated orthopedic infections. Various fillers have been added to cement to increase antibiotic elution, but they often do so at the expense of strength. This study evaluated the effect of adding a borate bioactive glass, previously shown to promote bone formation, on vancomycin elution from PMMA bone cement.Methods: Five cement composites were made: three loaded with borate bioactive glass along with 0, 1, and 5 grams of vancomycin and two without any glass but with 1 and 5 grams vancomycin to serve as controls. The specimens were soaked in PBS. Eluate of vancomycin was collected every 24 hours and analyzed by HPLC. Orthopedic-relevant mechanical properties of each composite were tested over time.Results: The addition of borate bioactive glass provided an increase in vancomycin release at Day 1 and an increase in sustained vancomycin release throughout the treatment period. An 87.6% and 21.1% increase in cumulative vancomycin release was seen for both 1g and 5g loading groups, respectively. Compressive strength of all composites remained above the weight-bearing threshold of 70 MPa throughout the duration of the study with the glass-containing composites showing comparable strength to their respective controls.Conclusion: The incorporation of borate bioactive glass into commercial PMMA bone cement can significantly increase the elution of vancomycin. The mechanical strength of the cement-glass composites remained above 70 MPa even after soaking for 8 weeks, suggesting their suitability for orthopedic weight-bearing applications.


2019 ◽  
Vol 102 ◽  
pp. 185-197 ◽  
Author(s):  
Anjaneya Dixit ◽  
Sze Dai Pang ◽  
Sung-Hoon Kang ◽  
Juhyuk Moon

2020 ◽  
Vol 10 (16) ◽  
pp. 5594 ◽  
Author(s):  
Eugenia Mariana Tudor ◽  
Christoph Scheriau ◽  
Marius Catalin Barbu ◽  
Roman Réh ◽  
Ľuboš Krišťák ◽  
...  

The aim of this study was to investigate the flammability of ecologically friendly, 100% natural larch and poplar bark-based panels bonded with clay. The clay acted as a fire retardant, and it improved the fire resistance of the boards by 12–15% for the surface and 27–39% for the edge of the testing specimens. The thermal conductivity was also analyzed. Although the panels had a density ranging from 600 to 900 kg/m3, thermal conductivity for the panel with a density of 600 kg/m3 was excellent, and it was comparable to lightweight insulation panels with much lower densities. Besides that, the advantage of the bark clay boards, as an insulation material, is mostly in an accumulative capacity similar to wood cement boards, and it can significantly improve the climatic stability of indoor spaces that have low ventilation rates. Bark boards with clay, similar to wood cement composites (wood wool cement composites and wood particle cement composites), have low mechanical properties and elasticity. Therefore, there their use is limited to non-structural paneling applications. These ecologically friendly, 100% natural and recyclable composites can be mostly used with respect to their thermal insulation, acoustics and fire resistance properties.


2017 ◽  
Vol 131 ◽  
pp. 303-308 ◽  
Author(s):  
Donghoon Kang ◽  
Kang Seok Seo ◽  
HeeYoung Lee ◽  
Wonseok Chung

2018 ◽  
Vol 12 (1) ◽  
pp. 401-412 ◽  
Author(s):  
Hamza Laoubi ◽  
Madani Bederina ◽  
Amina Djoudi ◽  
Adeline Goullieux ◽  
Rose Marie Dheilly ◽  
...  

Introduction:This study aims to highlight the physicomechanical properties of a new lightweight construction material which is composed of plaster as a binder and dune sand and Expanded Polystyrene Beads (EPS) as aggregates.Methods:For this purpose, different mixtures were designed with different percentages and particle sizes of EPS aggregates in order to test the porosity, the density and the thermo-mechanical properties of the studied composite. Furthermore, Electron Microscopy (EM) visualisation and SEM analysis were used for the study of the structure and the interface “paste-aggregates”.Results and Conclusion:The obtained results showed that the progressive incorporation of an increasing percentage of PSE decreases the density of the plaster composite and consequently improves its thermal properties. As expected, the mechanical strength decreases with the increase of the EPS content, but relatively good mechanical strength can be obtained with low quantities of EPS. Concerning the material structure, it should be noted that the composite appears more or less homogeneous and the EPS beads adhere well to the plaster matrix.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 535 ◽  
Author(s):  
Xi Peng ◽  
Han Li ◽  
Qin Shuai ◽  
Liancong Wang

This work aims to investigate the feasibility that alkali-based geopolymer foams produced from metakaolin and Na2O2 are applied for fire protection. Dry bulk density, porosity, mechanical strength, thermal conductivity, and fire resistance of the geopolymer foams are discussed as a function of the Na2O2 amounts. As Na2O2 content varies from 1% to 4%, dry bulk density, mechanical strength and thermal conductivity of the geopolymer foams approximately exhibit opposite trends with that of the porosity. At the later stage of the 3 h fire-resistance tests, the reverse-side temperatures of all tested samples were always maintained at 220–250 °C. Meanwhile, the amorphous skeleton structures have been converted to smooth ceramics during the high temperature processes, which is the main reason that the geopolymer foams possess a stable porous structure and excellent fire resistance. Therefore, we could conclude that alkali-activated geopolymer foams with extraordinary fire resistance have great potential for fire protection applications.


Sign in / Sign up

Export Citation Format

Share Document