scholarly journals Enhanced Resistance to Fire of the Bark-Based Panels Bonded with Clay

2020 ◽  
Vol 10 (16) ◽  
pp. 5594 ◽  
Author(s):  
Eugenia Mariana Tudor ◽  
Christoph Scheriau ◽  
Marius Catalin Barbu ◽  
Roman Réh ◽  
Ľuboš Krišťák ◽  
...  

The aim of this study was to investigate the flammability of ecologically friendly, 100% natural larch and poplar bark-based panels bonded with clay. The clay acted as a fire retardant, and it improved the fire resistance of the boards by 12–15% for the surface and 27–39% for the edge of the testing specimens. The thermal conductivity was also analyzed. Although the panels had a density ranging from 600 to 900 kg/m3, thermal conductivity for the panel with a density of 600 kg/m3 was excellent, and it was comparable to lightweight insulation panels with much lower densities. Besides that, the advantage of the bark clay boards, as an insulation material, is mostly in an accumulative capacity similar to wood cement boards, and it can significantly improve the climatic stability of indoor spaces that have low ventilation rates. Bark boards with clay, similar to wood cement composites (wood wool cement composites and wood particle cement composites), have low mechanical properties and elasticity. Therefore, there their use is limited to non-structural paneling applications. These ecologically friendly, 100% natural and recyclable composites can be mostly used with respect to their thermal insulation, acoustics and fire resistance properties.

2011 ◽  
Vol 335-336 ◽  
pp. 1186-1189
Author(s):  
He Fan ◽  
Jun Yu Liu ◽  
Bao Kuan Ning

Fire-resistance performance experiments with static loading-fire are investigated about one carbon fiber sheet(CFS) shear strengthened and one without CFS strengthened reinforced concrete (RC) beams exposed to the ISO834 standard fire. Shear strengthened RC beams are wrapped with fire insulation material- thick painted fire retardant coatings. Relationship between measure points temperature, displacement and time are achieved. The results suggest that: the ratio of shear-span is the main factor to fire-resistance rating and failure modes of CFS shear strengthened RC beams in fire; shear-failure fire-resistance rating are increased by thickening fire insulation to shear strengthened RC beams; mid-span deflection of shear failure is approximate one half of bending failure when shear strengthened RC beams.


2020 ◽  
pp. 43-54
Author(s):  
Владимир Ильич Голованов ◽  
Андрей Владимирович Пехотиков ◽  
Владимир Валерьевич Павлов

Представлены результаты анализа экспериментальной и аналитической оценки огнезащитной эффективности покрытий для стальных конструкций. Обобщены данные многолетних исследований по определению зависимостей от температуры таких теплофизических характеристик, как теплопроводность и теплоемкость. Разработана структурно-методологическая схема выбора огнезащитных покрытий для стальных конструкций в целях обеспечения нормативных требований по огнестойкости. Проведены экспериментальные исследования по определению огнезащитной эффективности терморасширяющихся покрытий на эпоксидной основе при воздействии температурного режима горения углеводородов. Рассмотрен вопрос о гармонизации методики экспериментальной оценки огнезащитной эффективности средств огнезащиты для стальных конструкций с действующими европейскими нормами. Установлены критерии выбора пассивной огнезащиты, зависящие от области применения способов огнезащиты. Steel structures have high strength, relative lightness and durability, but when exposed to high temperatures in a fire, they deform, lose stability and load-bearing capacity. The collapse of load-bearing steel structures can occur in 10-15 minutes after the fire start. The actual fire resistance limit of structures can be increased by using the active and passive fire protection systems. The use of the active system for increasing the actual fire resistance limit is not provided in the regulatory documents. Passive fire protection is a complex of technical solutions including the use of non-flammable materials and bulging compounds. It is also an integral part of the building structure that ensures the required fire resistance limit. Assessment of fire resistance of building structures of residential, public, warehouse and industrial buildings is carried out taking into account the temperature regime (cellulose) of a standard fire. At oil and gas, petrochemical enterprises as well as at oil production platforms fires can occur at combustion of various hydrocarbon fuels which are characterized by a rapid temperature increase to 1100 °C. In this case, in accordance with GOST R EN 1363-2-2014, the temperature regime of hydrocarbon combustion is used to assess the fire resistance of building structures. The fire-retardant effectiveness of fire protection means for steel structures is determined by the heating time of the standard I-shaped column without applying a static load on the sample to the average “critical” temperature of the steel of 500 °C. Materials used for fire protection of steel structures must have a good thermal insulation ability, which is estimated by the coefficient of thermal conductivity. When heated to high temperatures, the thermal conductivity coefficient of fire-resistant materials varies depending on their composition and temperature. Based on the analysis of research to determine the fire-retardant effectiveness of fire protection means for steel structures there was developed a structural and methodological scheme that allows to make a choice of fire protection. Currently, as a fire protection there are widely used intumescent paints and thermo-expandable coatings. Taking into account the lack of knowledge of the influence of long-term operation and a large number of other technological factors on the fire-retardant effectiveness of coatings of steel structures covered with intumescent paints, it would be right to limit the use of such type of fire protection for load-bearing structures contributing to the overall sustainability of buildings with a required fire resistance of R 30. For fire protection of steel structures of oil and gas facilities located in the open air, in severe climatic conditions and exposed to aggressive environments there is successfully used a thermo-expandable two-component epoxy-based coating. The analysis of experimental data showed that the use of epoxy-based coatings is suitable for metal structures in the open air. In closed rooms the epoxy intumescent coating should not be used because at high temperature in a fire it ignites with toxic combustion products release.


Author(s):  
A. Kovalov ◽  
◽  
Y. Otrosh ◽  
V. Tomenko ◽  
O. Vasylyev ◽  
...  

Abstract. The results of the development of fire-retardant substances based on domestic materials to increase the fire resistance of fire-retardant steel structures are presented. New compositions of fire-retardant substances on the basis of domestic materials capable of swelling are developed. A series of experimental studies to determine the heating temperature of fire-resistant steel structures. For this purpose, samples of reduced size in the form of a steel plate with a flame retardant applied to the heating surface were used. Fire tests of fire-retardant steel plates coated with the developed fire-retardant substance forming a coating on the protected surface, in the conditions of their tests on the standard temperature of the fire using the installation to determine the fire-retardant ability of fire-retardant coatings. The results of experimental determination of temperature from an unheated surface of steel plates with a fire-retardant covering in the conditions of fire influence at a standard temperature mode of a fire are analyzed. Based on the obtained data (temperature in the furnace and from the unheated surface of steel plates with fire protection system) the solution of the inverse problems of thermal conductivity found thermophysical characteristics of fire protection coating (thermal conductivity and specific volume), which can be used for thermal calculation heating of fire-retardant steel structures at arbitrary fire temperatures. The thermophysical characteristics of the formed fire-retardant coating are substantiated to find the characteristics of the fire-retardant ability of the newly created fire-retardant coating and to ensure the fire resistance of fire-retardant steel structures. The efficiency of the developed fire-retardant coating for protection of steel structures is proved.


2021 ◽  
Vol 11 (6) ◽  
pp. 2521
Author(s):  
Feng Jiang ◽  
Jianyong Liu ◽  
Wei Yuan ◽  
Jianbo Yan ◽  
Lin Wang ◽  
...  

Improving the fire resistance of the key cables connected to firefighting and safety equipment is of great importance. Based on the engineering practice of an oil storage company, this study proposes a modification scheme that entails spraying fire-retardant coatings on the outer surface of a cable tray to delay the failure times of the cables in the tray. To verify the effect, 12 specimens were processed using five kinds of fire-retardant coatings and two kinds of fire-resistant cotton to coat the cable tray. The specimens were installed in the vertical fire resistance test furnace. For the ISO 834 standard fire condition, a fire resistance test was carried out on the specimens. The data for the surface temperature and the insulation resistance of the cables in trays were collected, and the fireproof effect was analyzed. The results showed that compared with the control group, the failure time of the cable could be delayed by 1.57–14.86 times, and the thicker the fire-retardant coatings were, the better the fireproof effect was. In general, the fire protection effect of the fire-retardant coating was better than that of the fire-resistant cotton.


2021 ◽  
Vol 13 (14) ◽  
pp. 7945
Author(s):  
Matteo Vitale ◽  
María del Mar Barbero-Barrera ◽  
Santi Maria Cascone

More than 124 million tons of oranges are consumed in the world annually. Transformation of orange fruit generates a huge quantity of waste, largely composed of peels. Some attempts to reuse by-products derived from citrus waste have been proposed for energy production, nutrient source or pharmaceutical, food and cosmetic industries. However, their use in the building sector had not been researched. In this study, orange peels, in five different ratios, from 100% of wet peels to 75% and from 0% of dry peels to 25%, were submitted to a thermo-compression procedure. They were evaluated according to their physical (bulk density, water absorption, thickness swelling, surface soundness and thermal conductivity) and mechanical properties (bending strength and modulus of elasticity). The results showed that orange peels can be used as thermal insulation material. The addition of dried peels makes the structure of the board heterogeneous and thus increases its porosity and causes the loss of strength. Hence, the board with the sole use of wet peel, whose thermal conductivity is 0.065 W/mK while flexural strength is 0.09 MPa, is recommended.


2007 ◽  
Vol 546-549 ◽  
pp. 1581-1584 ◽  
Author(s):  
Jiu Peng Zhao ◽  
Deng Teng Ge ◽  
Sai Lei Zhang ◽  
Xi Long Wei

Silica aerogel/epoxy composite, a kind of efficient thermal insulation material, was prepared by doping silica aerogel of different sizes into epoxy resin through thermocuring process. The results of thermal experiments showed that silica aerogel/epoxy composite had a lower thermal conductivity (0.105W/(m·k) at 60 wt% silica aerogel) and higher serviceability temperature (Martens heat distortion temperature: 160°C at 20 wt% silica aerogel). In addition, the composite doping larger size (0.2-2mm) of silica aerogel particle had lower thermal conductivity and higher Martens heat distortion temperature. Based on the results of SEM and FT-IR, the thermal transfer model was established. Thermal transfer mechanism and the reasons of higher Martens heat distortion temperature have been discussed respectively.


2021 ◽  
pp. 0021955X2110626
Author(s):  
Tae Seok Kim ◽  
Yeongbeom Lee ◽  
Chul Hyun Hwang ◽  
Kwang Ho Song ◽  
Woo Nyon Kim

The effect of perfluoroalkane (PFA) on the morphology, thermal conductivity, mechanical properties and thermal stability of rigid polyurethane (PU) foams was investigated under ambient and cryogenic conditions. The PU foams were blown with hydrofluorolefin. Morphological results showed that the minimum cell size (153 μm) was observed when the PFA content was 1.0 part per hundred polyols by weight (php). This was due to the lower surface tension of the mixed polyol solution when the PFA content was 1.0 php. The thermal conductivity of PU foams measured under ambient (0.0215 W/mK) and cryogenic (0.0179 W/mK at −100°C) conditions reached a minimum when the PFA content was 1.0 php. The low value of thermal conductivity was a result of the small cell size of the foams. The above results suggest that PFA acted as a nucleating agent to enhanced the thermal insulation properties of PU foams. The compressive and shear strengths of the PU foams did not appreciably change with PFA content at either −170°C or 20°C. However, it shows that the mechanical strengths at −170°C and 20°C for the PU foams meet the specification. Coefficient of thermal expansion, and thermal shock tests of the PU foams showed enough thermal stability for the LNG carrier’s operation temperature. Therefore, it is suggested that the PU foams blown by HFO with the PFA addition can be used as a thermal insulation material for a conventional LNG carrier.


Sign in / Sign up

Export Citation Format

Share Document