Evaluation of fracture appearance transition temperature to forged 3Cr–1Mo–0.25V steel using ultrasonic characteristics

2006 ◽  
Vol 60 (29-30) ◽  
pp. 3577-3581 ◽  
Author(s):  
Young Hyun Nam ◽  
Yong-Il Kim ◽  
Seung Hoon Nahm
2007 ◽  
Vol 539-543 ◽  
pp. 4488-4493
Author(s):  
Yi Fei Gao ◽  
Jun Chang Shen ◽  
Bo Qun Wu

Charpy transition temperature TCVN and reference temperature To for 10Ni3CrMoV steel were determined using two different experimental techniques such as Charpy V-notch impact test technique and reference temperature To test technique. It was found that two methods provided different test results. The median master curve with upper and lower tolerance bounds was got from the test. The upper tolerance bound is often used for material design and application. At the same time the TCVN and To results were discussed for two kinds of heat treatment which are QT(Quenching and Temper) and QLT(Quenching, anneal and temper). JC (med ) K values calculated were 101 and 105MPam1/2 for the QT and QLT steels, respectively. These indicated that the QLT steels have the higher JC (med ) K , the lower reference temperature and lower energy (or fracture appearance) transition temperature(ETT50 or FATT50) than the QT steels. This was mainly related with the different microstructures of two kinds of heat treatment.


2005 ◽  
Vol 128 (4) ◽  
pp. 566-571 ◽  
Author(s):  
Jinzhu Tan ◽  
Wenlong Huang ◽  
Y. J. Chao

A kinetics model for temper embrittlement was employed as the basis for predicting the fracture appearance transition temperature (FATT) of 2.25Cr-1Mo steel used for hot-wall hydrofining reactors. Various heat treatments were performed to obtain different degrees of temper embrittlement for the steel. Charpy V-notch impact tests and Auger electron spectroscopy analysis were performed on embrittled 2.25Cr-1Mo steels to establish the relation between the shift of FATT and the change in the concentration of phosphorus segregated in the grain boundary of the steel. Based on the model and test data, a method of predicting the FATT at service time t was developed for the 2.25Cr-1Mo steel. Good agreement is obtained when the predicted values are compared to test data from open literature.


2012 ◽  
Vol 06 ◽  
pp. 385-390 ◽  
Author(s):  
UN BONG BAEK ◽  
SEOK CHEOL LEE ◽  
SEUNG HOON NAHM ◽  
YOUNG HYUN NAM

This paper reports that the Barkhausen noise method can be used to accurately characterize forged reactor vessels. The Charpy V-notch impact tests were conducted on the respective specimens with three different types of heat history. Various test results including fracture appearance transition temperature (FATT) were obtained. The Barkhausen noise voltage changed with heat treatment temperature (870~1000°C) and conditions (Tempered, PWHT). The fracture appearance transition temperature can be predicted using the Barkhausen noise voltage.


2018 ◽  
Vol 24 (2) ◽  
pp. 112 ◽  
Author(s):  
Giusepe Napoli ◽  
Giulia Fabrizi ◽  
Riccardo Rufini ◽  
Sabrina Mengaroni ◽  
Andrea Di Schino

<p class="AMSmaintext"><span lang="EN-GB">In this paper the effect of quenching and tempering (Q&amp;T) thermal treatment on mechanical properties of a C-Mn steel with 0.22% Cr for forged components is studied. Due to the lack od any micro-alloying elements (such as vanadium or niobium) such steel can just reach mechanical target allowed by its intrinsic hardenability. Aim of this work is to evaluate the mechanical properties dependence as a function of different quenching and tempering treatments. Results show that, after Q&amp;T, steel can reach a yield strength of 330 MPa combined with a -20°C </span><span lang="EN-GB">fracture appearance transition temperature (50% FATT) measured with a Charpy-V impact test making this steel suitable for low temperature application.</span></p>


Author(s):  
Jeong-Tae Kim ◽  
Byung-Il Yang ◽  
Hee-Kyung Kwon

In order to improve the toughness in the welded heat affected zone (HAZ) of the SA508 Grade 3 Class 1 steel, the intercritical heat treatment (IHT) has been applied before the welding. The application of the IHT before welding resulted in the decrease of fracture appearance transition temperature (FATT50) and 68Joule transition temperature (vTr68). The improved effects of the IHT on the mechanical properties of this steel have been consistently preserved in the HAZ and the effect of the IHT before welding on the transition temperatures in the HAZ of this steel was much better than those of base metal. These positive results were closely related with the newly formed sub-grains, the spheoridized carbides precipitated at sub-grain boundaries and lath boundaries which would have been acted as obstacles to the cleavage propagation.


Author(s):  
Vamadevan Gowreesan ◽  
Wayne Greaves

A radial steam turbine developed cracks after 220,000 hours of service. The rotor had an integral disc with eight rows of blades, and a short stub. Nine inlets on the disc channeled steam from one side to the other, and then radially outward. Analysis of the fracture surface revealed cracks originating in some of the inlet holes, and propagating by fatigue. No material defects were found at the crack initiation sites. Hardness and microstructure (optical) across the disc were uniform, but chemical composition analysis of the alloy revealed high level of phosphorus and sulfur. In addition, the microstructure consisted of uniformly tempered martensite with manganese sulfide stringers. Although tensile properties were normal, impact testing indicated embrittlement by a shift in Fracture Appearance Transition Temperature (FATT). Metallurgical evidence of embrittlement was also found. It was concluded that service induced cyclic loading in combination with reduced crack resistance caused by embrittlement lead to cracking.


2018 ◽  
Vol 921 ◽  
pp. 149-156
Author(s):  
Chuan Guo Zhang ◽  
Qi Jie Zhai ◽  
Lei Zheng

DWTT (Drop weigh tear test) is an effective way to evaluate the fracture propagation for pipeline steel. The effects of slab reheating temperature, soaking time, single pass reduction ratio during recrystallization zone rolling and transfer bar ratio during non-recrystallization zone rolling on DWTT performance were studied for heavy gauge pipeline steel. And the grain refinement and toughening mechanism were discussed. It was found that the grain in the core of the plate can be refined by reducing the reheating temperature, increasing the single pass reduction ratio during recrystallization zone rolling and setting suitable transfer bar ratio during non-recrystallization zone rolling, which promote the DWTT property improvement for heavy gauge pipeline steel. The 30.9mm heavy gauge pipeline steel plate was industrial produced and the X70 UOE welded pipe with dimension in Φ1219×30.9mm was manufactured. The DWTT 85%FATT (fracture appearance transition temperature) of pipe body is as low as -20°C.


Author(s):  
Toshihiko Amano ◽  
Satoshi Igi ◽  
Takahiro Sakimoto ◽  
Takehiro Inoue ◽  
Shuji Aihara

This paper describes the results of pressure vessel fracture test which called West Jefferson and/or partial gas burst testing using Grade API X65 linepipe steel with high Charpy energy that exhibits inverse facture in the Drop Weight Tear Test (DWTT). A series of pressure vessel fracture tests which is as part of an ongoing effort by the High-strength Line Pipe committee (HLP) of the Iron and Steel Institute of Japan (ISIJ) was carried out at low temperature in order to investigate brittle-to-ductile transition behavior and to compare to DWTT fracture behavior. Two different materials on Fracture Appearance Transition Temperature (FATT) property were used in these tests. One is −60 degree C and the other is −25 to −30 degree C which is defined as 85 % shear area fraction (SA) in the standard pressed notch DWTT (PN-DWTT). The dimensions of the test pipes were 24inches (609.6 mm) in outside diameter (OD), 19.1 mm in wall thickness (WT). In each test, the test pipe is cooled by using liquid nitrogen in the cooling baths. Two cooling baths are set up separately on the two sides of the test vessel, making it possible to obtain fracture behaviors under two different test temperatures in one burst test. The test vessel was also instrumented with pressure transducers, thermocouples and timing wires to obtain the pressure at the fracture onset, temperature and crack propagation velocity, respectively. Some informative observations to discuss appropriate evaluation method for material resistance to brittle facture propagation for high toughness linepipe materials are obtained in the test. When the pipe burst test temperatures are higher than the PN-DWTT transition temperature, ductile cracks were initiated from the initial notch and propagated with short distance in ductile manner. When the pipe burst test temperatures were lower than the PN-DWTT transition temperature, brittle cracks were initiated from the initial notch and propagated through cooling bath. However, the initiated ductile crack at lower than the transition temperature was not changed to brittle manner. This means inverse facture occurred in the PN-DWTT is a particular problem caused by the API DWTT testing method. Furthermore, results for the pipes tested indicated that inverse facture occurred in PN-DWTT at the temperature above the 85 % FATT may not affect the arrestability against the brittle fracture propagation and it is closely related with the location of brittle fracture initiation origin in the fracture appearance of PN-DWTT.


Author(s):  
Y. Hioe ◽  
G. Wilkowski ◽  
M. Fishman ◽  
M. Myers

In this paper the results will be presented for burst tests from a Joint Industry Project (JIP) on “Validation of Drop Weight Tear Test (DWTT) Methods for Brittle Fracture Control in Modern Line-Pipe Steels by Burst Testing”. The JIP members for this project were: JFE Steel as founding member, ArcelorMittal, CNPC, Dillinger, NSSMC, POSCO, Tenaris, and Tokyo Gas. Two modified West Jefferson (partial gas) pipe burst tests were conducted to assess the brittle-to-ductile transition temperature and brittle fracture arrestability of two 48-inch diameter by 24.6-mm thick X65 TMCP line-pipe steels. These steels had very high Charpy energy (350J and 400J) which is typical of many modern line-pipe steels. In standard pressed-notch DWTT specimen tests, these materials exhibited abnormal fracture appearance (ductile fracture from the pressed notch prior to brittle fracture starting) that occurs with many high Charpy energy steels. Such behavior makes the transition temperature difficult to determine. The shear area values versus temperature results for these two burst tests compared to various modified DWTT specimens are shown. Different rating methodologies; DNV, API, and a Best-Estimate of steady-state fracture propagation appearance were evaluated.


Author(s):  
Martin Březina ◽  
Jana Petzová ◽  
Ľudovít Kupča ◽  
Michal Kapusňák

The paper describes the testing procedures and the basic results of the evaluation of the Small Punch Test (SPT) specimens after their irradiation in the Halden reactor in Norway. The SPT technique was used for estimation of basic mechanical properties as ultimate tensile strength and yield stress of the tested materials as well as the Fracture Appearance Transition Temperature (FATT). The main aim of the work was to compare the SPT results obtained from the surveillance specimen programs implemented in the Slovak power reactors with the SPT results from the specimens irradiated in the research reactor in Halden. For the project there were chosen 3 types of steels used for construction of the reactor VVER 440/213 type in Bohunice NPPs in the Slovak Republic. The experimental materials were two bainitic steels — base metal and weld metal of the reactor pressure vessel wall and austenitic cladding of the reactor wall. Two sets of SPT specimens together with mini-tensile specimens prepared from the experimental materials were irradiated in the Halden reactor. The samples were irradiated at 275°C to two fluence values which are equivalent to approximately of 4 and 6 campaigns in the power reactor. Obtained results are compared to up-to-date SPT results from the surveillance specimen program applied at Bohunice NPP in the Slovak Republic.


Sign in / Sign up

Export Citation Format

Share Document