An EBSD investigation on the columnar grain growth in non-oriented electrical steels assisted by strain induced boundary migration

2019 ◽  
Vol 252 ◽  
pp. 42-46 ◽  
Author(s):  
E.J. Gutiérrez Castañeda ◽  
M.G. Hernández Miranda ◽  
A. Salinas Rodríguez ◽  
J. Aguilar Carrillo ◽  
I. Reyes Domínguez
2019 ◽  
Vol 243 ◽  
pp. 8-18 ◽  
Author(s):  
E.J. Gutiérrez Castañeda ◽  
C.N. Palafox Cantú ◽  
A.A. Torres Castillo ◽  
A. Salinas Rodríguez ◽  
R. Deaquino Lara ◽  
...  

2006 ◽  
Vol 258-260 ◽  
pp. 39-45
Author(s):  
José Barros ◽  
Yvan Houbaert

The effect of Si and Al diffusion from a coating in the microstructure of electrical steels have been investigated for three different processing routes. In general the final texture is not affected by the diffusion of Si or Al from the coating whereas the grain size and mor- phology can be affected if the silicon content of the substrate is low enough to allow phase transformation. The gamma to alpha phase transformation caused by the diffusion of Si and Al determines the grain size and morphology resulting in columnar grain growth. The evolu- tion of the microstructures during the diffusion annealing for the production of high Si steels shows some common features with the microstructure evolution during the grain growth in conventional low silicon (Si < 3 wt.%) electrical steels.


2014 ◽  
Vol 782 ◽  
pp. 201-204 ◽  
Author(s):  
Ivan Petryshynets ◽  
František Kováč ◽  
Mária Molnárová ◽  
Petra Gavendová ◽  
Martin Sopko ◽  
...  

The present work investigates texture evolution stages in vacuum-degassed non-oriented electrical steels. The main idea behind the improvement of soft magnetic properties relies on deformation induced grain growth phenomena and heat transport phenomena promoting the preferable formation of columnar grains with so called cube crystallographic orientation {100}<0vw>. In order to achieve the desired orientation with appropriate microstructure state from magnetic properties point of view, we have used an adjusted temper rolling process at elevated temperature and subsequent dynamical annealing in laboratory conditions.


2004 ◽  
Vol 269 (3) ◽  
pp. 333-340 ◽  
Author(s):  
F. Kovác̆ ◽  
M. Dz̆ubinský ◽  
Y. Sidor

1969 ◽  
Vol 32 (2) ◽  
pp. 351-353 ◽  
Author(s):  
I. Amato ◽  
R.L. Colombo
Keyword(s):  

1988 ◽  
Vol 128 ◽  
Author(s):  
Joyce C. Liu ◽  
Jian Li ◽  
J. W. Mayer ◽  
Charles W. Allen ◽  
Lynn E. Rehn

ABSTRACTIn situ observations of 1.5 MeV Xe+ ion irradiated Au films at room temperature and at 150°C reveal the evolution of grain growth: the average grain size increases by the mechanisms of grain boundary migration and grain coalescence.


2012 ◽  
Vol 625 ◽  
pp. 304-307 ◽  
Author(s):  
Hai Zhou Yu ◽  
Wen Jun Liu ◽  
Lian Ying ◽  
Min You

Four series of cermets with the SiC whisker content between 0 and 1.0 wt.% were prepared by vacuum sintering. The transverse rupture strength (TRS), hardness (HRA) and fracture toughness (KIC) were also measured. The SiC whiskeraddition was located at the grain boundaries, which prevented grain boundary migration and restrained the grain growth. However, an increasing SiC whisker content decreased the wettability of the binder on the Mo2FeB2 hard phase. The highest TRS and fracture toughness was found for the cermets with 0.5 wt.% SiC whisker addition, whereas the cermets without SiC whisker addition exhibited the maximum hardness.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1914 ◽  
Author(s):  
Ivan Petryshynets ◽  
František Kováč ◽  
Branislav Petrov ◽  
Ladislav Falat ◽  
Viktor Puchý

In the present work, we have used unconventional short-term secondary recrystallization heat treatment employing extraordinary high heating rate to develop coarse-grained microstructure with enhanced intensity of rotating cube texture {100}<011> in semi-finish vacuum degassed non-oriented electrical steels. The soft magnetic properties were improved through the increase of grains size with favourable cube crystallographic orientation. The appropriate final textural state of the treated experimental steels was achieved by strain-induced grain boundary migration mechanism, activated by gradient of accumulated stored deformation energy between neighbouring grains after the application of soft cold work, combined with steep temperature gradient during subsequent heat treatment under dynamic heating conditions. The materials in our experimentally prepared material states were mounted on the stator and rotor segments of electrical motors and examined for their efficiency in real operational conditions. Moreover, conventionally long-term heat treated materials, prepared in industrial conditions, were also tested for reference. The results show that the electrical motor containing the segments treated by our innovative approach, exhibits more than 1.2% higher efficiency, compared to the motor containing conventionally heat treated materials. The obtained efficiency enhancement can be directly related to the improved microstructural and textural characteristics of our unconventionally heat treated materials, specifically the homogenous coarse grained microstructure and the high intensity of cube and Goss crystallographic texture.


2000 ◽  
Vol 652 ◽  
Author(s):  
Melik C. Demirel ◽  
Andrew P. Kuprat ◽  
Denise C. George ◽  
Bassem S. El-Dasher ◽  
Neil N. Carlson ◽  
...  

ABSTRACTGrain boundary and crystallographic orientation information of an Al-foil with a columnar grain structure is characterized by Electron Backscattered Diffraction (EBSD) technique. The starting microstructure and grain boundary properties are implemented as an input for the three- dimensional grain growth simulation. In the computational model, minimization of the interface energy is the driving force for the grain boundary motion. The computed evolved microstructure is compared with the final experimental microstructure, after annealing at 550 °C. Good agreement is observed between the experimentally obtained microstructure and the simulated microstructure. The constitutive description of the grain boundary properties was based on a 1- parameter characterization of the variation in mobility with misorientation angle.


Sign in / Sign up

Export Citation Format

Share Document