Effect of surface texturing of UHMWPE on the coefficient of friction under arthrokinematic and loading conditions corresponding to the walking cycle

2021 ◽  
Vol 284 ◽  
pp. 129039
Author(s):  
J.L. Montes-Seguedo ◽  
I. Dominguez-Lopez ◽  
J.D.O. Barceinas-Sanchez
Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4886
Author(s):  
Agnieszka Lenart ◽  
Pawel Pawlus ◽  
Andrzej Dzierwa ◽  
Slawomir Wos ◽  
Rafal Reizer

Experiments were conducted using an Optimol SRV5 tester in lubricated friction conditions. Steel balls from 100Cr6 material of 60 HRC hardness were placed in contact with 42CrMo4 steel discs of 47 HRC hardness and diversified surface textures. Tests were carried out at a 25–40% relative humidity. The ball diameter was 10 mm, the amplitude of oscillations was set to 0.1 mm, and the frequency was set to 80 Hz. Tests were performed at smaller (45 N) and higher (100 N) normal loads and at smaller (30 °C) and higher (90 °C) temperatures. During each test, the normal load and temperature were kept constant. We found that the disc surface texture had significant effects on the friction and wear under lubricated conditions. When a lower normal load was applied, the coefficient of friction and wear volumes were smaller for bigger disc surface heights. However, for a larger normal load a higher roughness corresponded to a larger coefficient of friction.


Lubricants ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 68 ◽  
Author(s):  
Bijani ◽  
Deladi ◽  
Rooij ◽  
Schipper

Starvation occurs when the lubricated contact uses up the lubricant supply, and there is not enough lubricant in the contact to support the separation between solid surfaces. On the other hand, the use of textures on surfaces in lubricated contacts can result in a higher film thickness. In addition, a modification of the surface’s geometrical parameters can benefit the tribological behaviour of the contacts. In this article, for parallel sliding surfaces in starved lubricated conditions, the effect of surface texturing upon the coefficient of friction is investigated. It is shown that surface texturing may improve film formation under the conditions of starvation, and as a result, the frictional behaviour of the parallel sliding contact. Furthermore, the effect of starved lubrication on textured surfaces with different patterns in the presence of a cavitation effect, and its influence on frictional behaviour, is investigated. It is shown that surface texturing can reduce the coefficient of friction, and that under certain conditions, the texturing parameter could have an influence on the frictional behaviour of parallel sliding contacts in the starved lubrication regime.


The coefficient of friction of surfaces lubricated under boundary conditions may be profoundly affected by such factors as the degree of working of the substrate material, the nature of the oxide film and the degree of roughness of the surface. Experiments are described wherein the frictional behaviour of surfaces of stainless steel specimens prepared in various ways was compared. The worked surface layers in these particular experiments appear to increase the value of the coefficient of friction, but the effect of surface texture is of predominant importance. The effect of different oxide films is best illustrated by reference to pure aluminium, the surface of which has been oxidized under different environmental conditions. The constitution of the oxide film formed is modified with a consequent effect on boundary friction. When the friction of rough and smooth surfaces is compared, the difference in behaviour appears to be qualitative rather than quantitative.


2021 ◽  
Vol 7 (2) ◽  
pp. 9-16
Author(s):  
K. Tripathi ◽  
S. W. Lee

This study investigates the effect of laser surface texturing (LST) on the friction and wear behavior of grey cast iron (GCI) of internal combustion engine (ICE) cylinder in lubricated conditions. The dimples having diameter of about (58-60) μm and depth of about 10 μm were created on the surface with various dimple densities ranging from 5 to 50%. A ball-on-disc friction tests were performed for all the specimens under 5W30 and 15W50 oils with different viscosities. The tests were carried out at a load of 5N and speed of 5cm/s. The coefficient of friction of the dimpled specimen was reduced significantly by approximately 32% as compared to the polished speciemen. Specimen with 15% dimples exhibits the lowest coefficient of friction of all the dimpled specimens in both low and high viscous oils. The high viscous oil found to be more efficient regarding coefficeint of friction compared to the low viscous oil. The degree of wear of the specimens was analyzed on the basis of wear scar developed on the counter surface as it supplements the wear during the friction tests. The resistance to wear of the sliding specimens was found to be increased in high viscous oil compared to that in low viscous oil.


Lubricants ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 91 ◽  
Author(s):  
Dariush Bijani ◽  
Elena L. Deladi ◽  
Aydar Akchurin ◽  
Matthijn B. de Rooij ◽  
Dirk J. Schipper

In many industrial applications, a modification of the surface geometry can enhance the tribological behaviour of lubricated sliding contacts. In this paper, the effect of surface texturing on the coefficient of friction in parallel sliding lubricated surfaces is investigated. It is shown that surface texturing can improve film formation and, as a result, the load-carrying capacity as well as a reduction in the coefficient of friction. With the numerical model developed, and by considering cavitation, the effects of shape, depth, size, and the textured area fraction on the frictional behaviour of parallel sliding lubricated contacts under conditions of mixed lubrication is studied. In this article it is shown that the surface texturing can have a beneficial effect, in order to decrease friction.


2018 ◽  
Vol 117 ◽  
pp. 174-179 ◽  
Author(s):  
Slawomir Wos ◽  
Waldemar Koszela ◽  
Pawel Pawlus ◽  
Jolanta Drabik ◽  
Elzbieta Rogos

Tribologia ◽  
2018 ◽  
Vol 278 (2) ◽  
pp. 81-88 ◽  
Author(s):  
Barbara LISIECKA ◽  
Agata DUDEK

The demand for materials obtained using powder metallurgy (PM) is constantly increasing, especially on SDSSs, which are characterized by a two–phase structure consisting of ferrite and austenite. The main purpose of this study was to examine the effect of surface layer alloying with chromium carbide on the microstructure and tribological properties (e.g., hardness and wear resistance) of SDSSs. The multiphase sinters were prepared from two types of water–atomized steel powders: 316L and 409L. The technique of the APS method was used to deposit Cr3C2–NiAl powder on the SDSS surface. Electric arc (GTAW method) was used for surface alloying. Optical and scanning microscopy, X–ray phase analysis, and examinations of microhardness and coefficient of friction were performed in order to determine the microstructure and basic properties of SDSS after alloying. The surface alloying with Cr3C2 improves tribological properties of SDSSs such as hardness and the coefficient of friction.


2021 ◽  
Vol 42 (4) ◽  
pp. 437-449
Author(s):  
A.V. Morozov ◽  
◽  
Yu.Yu. Makhovskaya ◽  
K.S. Kravchuk ◽  
◽  
...  

2020 ◽  
Vol 14 (1) ◽  
pp. 99-108
Author(s):  
Takuya Osawa ◽  
Makoto Matsuo ◽  
Yuya Eyama ◽  
Hiroshi Yamamoto ◽  
Shinji Tanaka ◽  
...  

Sliding mechanical parts working under heavy loads and at high speeds in harsh environments are often subjected to sand and dust, leading to abnormal wear and seizing. Although sliding surfaces can be hardened and textured, there is a need for even higher wear and seizure resistance. We therefore did this study to confirm the trapping effect of surface texturing on dust by finding a way to visualize the dust. As a result, we confirmed that the dust became trapped in the grooves of the texture during the sliding. In addition, to produce a sliding surface having both seizure and wear resistance, we produced a surface combining a diamond-like carbon (DLC) film and surface texturing, and we evaluated its tribological characteristics. In dusty conditions, the specific wear rate was about 1/20 on surfaces where DLC film and the surface texturing were used in conjunction, and its wear resistance was higher than that of a non-treated stainless steel substrate. On the other hand, a rise in the coefficient of friction due to a rise in contact stress on the corners of the texturing grooves was confirmed. Therefore, when the tribological characteristics were evaluated by changing the radii of the groove corners and the parameters of the groove depth, the coefficient of friction was the lowest, decreasing about 50% for the test sample with a corner radius of 7.1 μm.


Sign in / Sign up

Export Citation Format

Share Document