Monodispersed ferric oxide nanoboxes as low-cost catalyst for long-term electrochemical hydrogen generation

2022 ◽  
Vol 306 ◽  
pp. 130966
Author(s):  
Qian Li ◽  
Yang Yu ◽  
Zhihong Jing ◽  
Kunlei Zhu
Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dingwang Huang ◽  
Lintao Li ◽  
Kang Wang ◽  
Yan Li ◽  
Kuang Feng ◽  
...  

AbstractA highly efficient, low-cost and environmentally friendly photocathode with long-term stability is the goal of practical solar hydrogen evolution applications. Here, we found that the Cu3BiS3 film-based photocathode meets the abovementioned requirements. The Cu3BiS3-based photocathode presents a remarkable onset potential over 0.9 VRHE with excellent photoelectrochemical current densities (~7 mA/cm2 under 0 VRHE) and appreciable 10-hour long-term stability in neutral water solutions. This high onset potential of the Cu3BiS3-based photocathode directly results in a good unbiased operating photocurrent of ~1.6 mA/cm2 assisted by the BiVO4 photoanode. A tandem device of Cu3BiS3-BiVO4 with an unbiased solar-to-hydrogen conversion efficiency of 2.04% is presented. This tandem device also presents high stability over 20 hours. Ultimately, a 5 × 5 cm2 large Cu3BiS3-BiVO4 tandem device module is fabricated for standalone overall solar water splitting with a long-term stability of 60 hours.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
J. A. van Ling ◽  
G. M. J. Bökkerink ◽  
I. de Blaauw ◽  
S. M. B. I. Botden

Abstract Background An Anorectal Malformation (ARM) is a rare congenital malformation, which requires proper correction to ensure the best long-term prognosis. These procedures are relatively infrequent and complex, in which a structured approach is important. Therefore, training on an affordable model could be beneficial. Methods A low-cost ARM model was developed. The base was reusable and the perineal body disposable. Both expert pediatric surgeons (Experts) and residents/fellows (Target group) were recruited for this study. After testing the model, they completed a questionnaire regarding the realism and didactic value of the model, using a 5-point Likert scale. Results Forty-four participants were recruited (Target group n = 20, Experts n = 24). The model has high mean scores of 3.8–4.4 for the total group and even higher on several aspects by the Target group. The experts regarded the haptics and manipulation of the fistula less realistic than the Target group (3.7 versus 4.3, p = 0.021 and 4.2 versus 4.6, p = 0.047). It was considered to be a very good training tool (mean 4.3), without significant differences between the groups. Conclusions These results show general consensus that this model is a potent training tool for the component steps of the repair of an ARM with recto-perineal fistula by sagittal approach.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Woo Seok Kim ◽  
Sungcheol Hong ◽  
Milenka Gamero ◽  
Vivekanand Jeevakumar ◽  
Clay M. Smithhart ◽  
...  

AbstractThe vagus nerve supports diverse autonomic functions and behaviors important for health and survival. To understand how specific components of the vagus contribute to behaviors and long-term physiological effects, it is critical to modulate their activity with anatomical specificity in awake, freely behaving conditions using reliable methods. Here, we introduce an organ-specific scalable, multimodal, wireless optoelectronic device for precise and chronic optogenetic manipulations in vivo. When combined with an advanced, coil-antenna system and a multiplexing strategy for powering 8 individual homecages using a single RF transmitter, the proposed wireless telemetry enables low cost, high-throughput, and precise functional mapping of peripheral neural circuits, including long-term behavioral and physiological measurements. Deployment of these technologies reveals an unexpected role for stomach, non-stretch vagal sensory fibers in suppressing appetite and demonstrates the durability of the miniature wireless device inside harsh gastric conditions.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Han Wang ◽  
Gloria M. Conover ◽  
Song-I Han ◽  
James C. Sacchettini ◽  
Arum Han

AbstractAnalysis of growth and death kinetics at single-cell resolution is a key step in understanding the complexity of the nonreplicating growth phenotype of the bacterial pathogen Mycobacterium tuberculosis. Here, we developed a single-cell-resolution microfluidic mycobacterial culture device that allows time-lapse microscopy-based long-term phenotypic visualization of the live replication dynamics of mycobacteria. This technology was successfully applied to monitor the real-time growth dynamics of the fast-growing model strain Mycobacterium smegmatis (M. smegmatis) while subjected to drug treatment regimens during continuous culture for 48 h inside the microfluidic device. A clear morphological change leading to significant swelling at the poles of the bacterial membrane was observed during drug treatment. In addition, a small subpopulation of cells surviving treatment by frontline antibiotics was observed to recover and achieve robust replicative growth once regular culture media was provided, suggesting the possibility of identifying and isolating nonreplicative mycobacteria. This device is a simple, easy-to-use, and low-cost solution for studying the single-cell phenotype and growth dynamics of mycobacteria, especially during drug treatment.


Proceedings ◽  
2019 ◽  
Vol 48 (1) ◽  
pp. 30
Author(s):  
Luis Hamilton Pospissil Garbossa ◽  
Argeu Vanz ◽  
Matias Guilherme Boll ◽  
Hamilton Justino Vieira

The increasing frequency of extreme storm events has implications for the operation of sewer systems, storm water, flood control monitoring and tide level variations. Accurate and continuous monitor water level monitoring is demanded in different environments. Piezoelectric sensors are widely used for water level monitoring and work submerged in waters subject to the presence of solid particles, biological fouling and saltwater oxidation. This work aimed to develop a simple, low-cost methodology to protect sensors over long-term deployment. The results show that simple actions, costing less than 2 EUR, can protect and extend the lifecycle of equipment worth over 2000 EUR, ensuring continuous monitoring and maintaining quality measurements.


2021 ◽  
Author(s):  
Juliane Helm ◽  
Henrik Hartmann ◽  
Martin Göbel ◽  
Boaz Hilman ◽  
David Herrera ◽  
...  

Abstract Tree stem CO2 efflux is an important component of ecosystem carbon fluxes and has been the focus of many studies. While CO2 efflux can easily be measured, a growing number of studies have shown that it is not identical with actual in situ respiration. Complementing measurements of CO2 flux with simultaneous measurements of O2 flux provides an additional proxy for respiration, and the combination of both fluxes can potentially help getting closer to actual measures of respiratory fluxes. To date, however, the technical challenge to measure relatively small changes in O2 concentration against its high atmospheric background has prevented routine O2 measurements in field applications. Here we present a new and low-cost field-tested device for autonomous real-time and quasi-continuous long-term measurements of stem respiration by combining CO2 (NDIR based) and O2 (quenching based) sensors in a tree stem chamber. Our device operates as a cyclic closed system and measures changes in both CO2 and O2 concentration within the chamber over time. The device is battery-powered with a > 1 week power independence and data acquisition is conveniently achieved by an internal logger. Results from both field and laboratory tests document that our sensors provide reproducible measurements of CO2 and O2 exchange fluxes under varying environmental conditions.


2021 ◽  
Author(s):  
◽  
Matt Cryer

<p>Colloidal semiconductor nanocrystals (NCs) with bandgaps less than 1 eV allow the development of mid wave infrared (MIR) sensitive detectors that exploit the benefits of colloidal materials, primarily bandgap selection and solution deposition. Additionally, the electrical behaviour of these films can be examined for characteristics that can increase the functionality of NC based detectors.  The production of devices that are designed to be competitive as ultra-low-cost, room temperature MIR detectors, operating with photonic, rather than thermal detection is detailed. The evolution of the colloidal synthesis, spray deposition methods, substrate materials and post deposition treatments used here lead to highly robust and high performing devices. These devices demonstrate a “colour” sensitivity down to 300 nm in the MIR (≈10 % of scale), with superior responsivities for this class of device, up to 0.9 AW⁻¹, and competitive specific detectivity up to 8 × 10⁹ Jones at 200 Hz and 300 K. Furthermore, these devices utilise a cheap and robust substrate material that allows operation after deformation up to 45 ° without degradation over many cycles. These devices offer a template for ultra-low-cost MIR detectors with performance that rivals microbolometers but with better measurement speed and spectral sensitivity. As such these devices showcase the key advantages of using colloidal NCs in MIR applications.  Planar and fully air processed thin film devices that demonstrate photo-induced memristive behaviour and can be used as a transistors, photode-tectors or memory devices are investigated. Following long term (60 h) air exposure, unpackaged NC films develop reliable memristive characteristics in tandem with temperature, gate and photoresponse. On/off ratios of more than 50 are achieved and the devices show long term stability, producing repeatable metrics over days of measurement. The on/off behaviour is shown to be dependent on previous charge flow and carrier density, implying memristive rather than switching behaviour. These observations are described within a long term trap filling model. This work represents an advance in the integration of NC films into electronic devices, which may lead to the development of multi-functional electronic components.  Building on the previous work the steps taken to move from a planar device, that works well in controlled conditions, to a multi-pixel sensor that can demonstrate MIR video imaging at room temperature in a noisy environment are shown. This is achieved with a 15 pixel detector that consists only of a polymer substrate and solution patterned NC pixels. This device can detect a 373 K object with the device at 298 K in a noisy environment. This performance is enabled by photogain at 5 V bias that reaches a maximum External Quantum Efficiency (EQE) of 1940 ± 290 % for a pixel with a 3.3 µm bandgap. Through the use of four separate bandgaps it is shown that “multicolour” thermal imaging systems can deliver another layer of information, on top of intensity, to the user. The behaviour of the system is examined under use and it is shown that the photoconductive device behaves as expected with regards to bias, and that trap enabled gain is sensitive to total incident flux, more than the spectral energy distribution of the target. Finally, it is shown that solution patterned QD fabrication methods can deliver electrical reproducibility between pixels that is sufficient to allow an imaging plane of multiple pixels.  The somewhat neglected tin chalcogenide semiconductor nanocrystals are investigated and inverse MIR detection at room temperature is demonstrated with planar, solution and airprocessed PbSnTe and SnTe QD devices. The detection mechanism is shown to be mediated by an interaction between MIR radiation and the vibrational stretches of adsorbed hydroxyl species at the oxdised NC surface. Devices are shown to possess mAW⁻¹ responsivity via a reduction in film conductance due to MIR radiation and, unlike classic MIR photoconductors, are unaffected by visible wavelengths. As such these devices offer the possibility of MIR thermal imaging that has an intrinsic solution to the blinding caused by higher energy light sources.  In summary, it is shown that semiconductor NCs with an all ambient fully solution processed deposition and ligand exchange procedure can be used to create simple, robust and cheap devices that are beginning to demonstrate metrics on par with current commercial thermal detector systems. It is also shown that these devices can under certain circumstances demonstrate novel behaviours that offer the prospects of enhanced or novel functionality.</p>


Sign in / Sign up

Export Citation Format

Share Document