Electrocatalytic behaviour of conducting poly o-toluidine at O2 and N2 atmospheric condition

Author(s):  
Paramasivam Rajakani ◽  
Saminathan Kulandaivel ◽  
Chinnapiyan Vedhi
2021 ◽  
Vol 11 (4) ◽  
pp. 1431
Author(s):  
Sungsik Wang ◽  
Tae Heung Lim ◽  
Kyoungsoo Oh ◽  
Chulhun Seo ◽  
Hosung Choo

This article proposes a method for the prediction of wide range two-dimensional refractivity for synthetic aperture radar (SAR) applications, using an inverse distance weighted (IDW) interpolation of high-altitude radio refractivity data from multiple meteorological observatories. The radio refractivity is extracted from an atmospheric data set of twenty meteorological observatories around the Korean Peninsula along a given altitude. Then, from the sparse refractive data, the two-dimensional regional radio refractivity of the entire Korean Peninsula is derived using the IDW interpolation, in consideration of the curvature of the Earth. The refractivities of the four seasons in 2019 are derived at the locations of seven meteorological observatories within the Korean Peninsula, using the refractivity data from the other nineteen observatories. The atmospheric refractivities on 15 February 2019 are then evaluated across the entire Korean Peninsula, using the atmospheric data collected from the twenty meteorological observatories. We found that the proposed IDW interpolation has the lowest average, the lowest average root-mean-square error (RMSE) of ∇M (gradient of M), and more continuous results than other methods. To compare the resulting IDW refractivity interpolation for airborne SAR applications, all the propagation path losses across Pohang and Heuksando are obtained using the standard atmospheric condition of ∇M = 118 and the observation-based interpolated atmospheric conditions on 15 February 2019. On the terrain surface ranging from 90 km to 190 km, the average path losses in the standard and derived conditions are 179.7 dB and 182.1 dB, respectively. Finally, based on the air-to-ground scenario in the SAR application, two-dimensional illuminated field intensities on the terrain surface are illustrated.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 118
Author(s):  
Carlos Zafra ◽  
Joaquín Suárez ◽  
Jorge E. Pachón

This paper analyzes the PM10 concentrations and influences of atmospheric condition (AC) and land coverage (LC) on a high-pollution megacity (Bogota, Colombia) from a public health viewpoint. Information of monitoring stations equipped with measuring devices for PM10/temperature/solar-radiation/wind-speed were used. The research period lasted eight years (2007–2014). AC and LC were determined after comparing daily PM10 concentrations (DPM10) to reference limits published by the World Health Organization (WHO). ARIMA models for DPM10 were also developed. The results indicated that urban sectors with lower atmospheric instability (AI) had a 2.85% increase in daily mortality (DM) in relation to sectors with greater AI. In these sectors of lower AI, impervious LC predominated, instead of vegetated LC. An ARIMA analysis revealed that a greater extent of impervious LC around a station led to a greater effect on previous days’ DPM10 concentrations. Extreme PM10 episodes persisted for up to two days. Extreme pollution episodes were probably also preceded by low mixing-layer heights (between 722–1085 m). The findings showed a 13.0% increase in WHO standard excesses (PE) for each 10 µg/m3 increase in DPM10, and a 0.313% increase in DM for each 10% increase in PE. The observed average reduction of 14.8% in DPM10 (−0.79% in DM) was probably due to 40% restriction of the traffic at peak hours.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Bithi Mitra ◽  
Md. Jahedul Islam

AbstractIn this paper, the performance of two-dimensional (2-D) wavelength-hopping/time-spreading (WH/TS) optical code division multiple access (OCDMA) system over free space optical (FSO) channel is analyzed in the presence of pointing error and different weather conditions. Prime code scheme is employed for both wavelength-hopping and time-spreading to address user code-matrix. The operating central wavelength of 1550 nm is considered to demonstrate the bit error rate (BER) performance of the proposed system as a function of various system parameters. The required optical power of the proposed system is determined to maintain a BER value of 10−9. The numerical evaluation interprets that the BER performance is highly dependent on transmission length, transmitted power, pointing error angle as well as the number of simultaneous user. It is also observed that the 2-D OCDMA system over free space needs minimum required optical power in case of rainy atmospheric condition, but it is maximum for foggy atmospheric condition.


Author(s):  
Noureddine Boubekri ◽  
Sofiane Doudou ◽  
Dounia Saifia ◽  
Mohammed Chadli

This paper focuses on mixed [Formula: see text] fuzzy maximum power point tracking (MPPT) of photovoltaic (PV) system under asymmetric saturation and variations in climatic conditions. To maximize the power from the PV panel array, the DC–DC boost converter is controlled by its duty ratio which is practically saturated between 0 and 1. MPPT based on conventional control presents the problems of oscillations around maximum power point (MPP) and divergence under rapid climatic changes. In order to attenuate the effect of atmospheric condition variation and take into account asymmetric saturation of the duty ratio, we propose a novel robust saturated controller based on both [Formula: see text] performances and Takagi-Sugeno (T-S) representation of PV-boost nonlinear system. Within this approach, the nonlinear PV-boost system and its reference are first described by T-S fuzzy models. Second, the saturation effect is represented by a polytopic model. Then, a fuzzy integral state feedback controller is designed to achieve stable MPPT control. Based on Lyapunov function, the mixed [Formula: see text] stabilization conditions are derived in terms of linear matrix inequalities (LMIs). The optimization of the attraction domain of closed-loop system is solved as a convex optimization problem in LMI terms. Finally, the efficiency of the proposed controller under irradiance and temperature variations is demonstrated through the simulation results. The comparison with some existing controllers shows an improvement of MPPT control performance in terms of power extraction.


2021 ◽  
Author(s):  
Huacheng Zhang ◽  
Tutomo Hisano ◽  
Shoji Mori ◽  
Hiroyuki Yoshida

Abstract Annular gas-liquid two-phase flows, such as the flows attached to the fuel rods of boiling water reactors (BWR), are a prevalent occurrence in industrial processes. At the gas-liquid interface of such flows, disturbance waves with diverse velocity and amplitude commonly arise. Since the thin liquid film between two successive disturbance waves leads to the dryout on the heating surface and limits the performance of the BWRs, complete knowledge of the disturbance waves is of great importance for the characterized properties of disturbance waves. The properties of disturbance waves have been studied by numerous researchers through extensive experimental and analytical approaches. However, most of the experimental data and analyses available in the literature are limited to the near atmospheric condition. In consideration of the properties of liquids and gases under atmospheric pressure which are distinct from those under BWR operating conditions (7 MPa, 285 °C), we employed the HFC134a gas and liquid ethanol whose properties at relatively low pressure and temperature (0.7 MPa, 40 °C) are similar to those of steam and water under BWR operating conditions as working fluids in a tubular test section having an inside diameter 5.0mm. Meanwhile, the liquid film thickness is measured by conductance probes. In this study, we report the liquid film thickness characteristics in a two-phase HFC134a gas-liquid ethanol flow. A simple model of the height of a disturbance wave was also proposed.


1992 ◽  
Vol 28 (12) ◽  
pp. 1411-1418 ◽  
Author(s):  
Masahiro ISHIBASHI ◽  
Masaaki UEKI ◽  
Masaki TAKAMOTO ◽  
Noriyuki WATANABE ◽  
Youhei HAYAKAWA ◽  
...  

Author(s):  
Suhyeon Park ◽  
Siddhartha Gadiraju ◽  
Jaideep Pandit ◽  
Srinath Ekkad ◽  
Federico Liberatore ◽  
...  

PIV measurements to understand the flow differences between reacting and non-reacting conditions were conducted in an optically accessible single can combustor. An industrial fuel nozzle was installed at the inlet of the test section to generate the swirl flow for flame stabilization and simulate realistic conditions of a gas turbine combustor. Five different equivalence ratios between 0.50 and 0.75 were tested with propane as fuel. Main air flow was also varied from Reynolds number from 50000 to 110000 with respect to the fuel nozzle diameter. Effect of preheating was tested by changing inlet air temperature from 23 to 200°C. The pressure at the test section was close to atmospheric condition throughout the tests. The measurements were performed with a 2-D PIV system. Time-averaged flow velocity, vorticity and turbulent kinetic energy (TKE) were obtained from PIV data and flow structures under different conditions were compared. Swirl jet impingement location on the liner wall was determined as well to understand the impact on the liner wall. Proper orthogonal decomposition (POD) further analyzed the data to compare coherent structures in the reacting and non-reacting flows.


2014 ◽  
Vol 565 ◽  
pp. 207-214 ◽  
Author(s):  
A.M. Vinu Mohan ◽  
Gutru Rambabu ◽  
K.K. Aswini ◽  
V.M. Biju

Sign in / Sign up

Export Citation Format

Share Document