Study of angle-resistance relation of the semi-circular specimen using conductive paint

Author(s):  
Darshan P.S. ◽  
C. Nanda Kartheek ◽  
D. Vivek Raj ◽  
Daniel P. Abraham ◽  
Arjun C.C.
Author(s):  
B. K. Kirchoff ◽  
L.F. Allard ◽  
W.C. Bigelow

In attempting to use the SEM to investigate the transition from the vegetative to the floral state in oat (Avena sativa L.) it was discovered that the procedures of fixation and critical point drying (CPD), and fresh tissue examination of the specimens gave unsatisfactory results. In most cases, by using these techniques, cells of the tissue were collapsed or otherwise visibly distorted. Figure 1 shows the results of fixation with 4.5% formaldehyde-gluteraldehyde followed by CPD. Almost all cellular detail has been obscured by the resulting shrinkage distortions. The larger cracks seen on the left of the picture may be due to dissection damage, rather than CPD. The results of observation of fresh tissue are seen in Fig. 2. Although there is a substantial improvement over CPD, some cell collapse still occurs.Due to these difficulties, it was decided to experiment with cold stage techniques. The specimens to be observed were dissected out and attached to the sample stub using a carbon based conductive paint in acetone.


1978 ◽  
Vol 100 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Hideo Awaji ◽  
Sennosuke Sato

The disk test in which a circular specimen with an internal crack is subjected to diametral compression is used to investigate combined mode I and mode II fracture. The stress intensity factors in the disk test are calculated numerically by means of the boundary collocation procedure and the dislocation method. Special care was taken to analyze the effect of the compression anvils. This method has the advantage, of allowing successive measurement of mode I, mode II and the combined mode fracture toughness under the same conditions. Some kinds of graphite, plaster and marble are examined to obtain the fracture toughness values, KIC, KIIC and the combined mode fracture criterion.


2021 ◽  
Vol 4 (2) ◽  
pp. 78-81
Author(s):  
N.S.W. Zulkefeli ◽  
W.M.I.W. Ismail ◽  
M.K.A.A. Razab ◽  
M.N. Masri

The conductive paint coating can be used to control the electromagnetic interference in electronic application. Conductive paint coating was made by mixing the epoxy and hardener with cathode waste material (CWM) in order to manipulate their properties. In this study, the conductivity and the thickness of the paint has been studied. The thickness of conductive paint coating was depends on the agglomeration of CWM content. The increasing of wt% of CWM, the thickness of paint is increasing. Bruker D2Phaser X-Ray diffraction has been used in order to get the phase analysis of the paint before and after soaking into Potassium Hydroxide solution


2019 ◽  
Vol 19 (02) ◽  
pp. 1950008 ◽  
Author(s):  
R. Tamil Selvan ◽  
W. A. D. M. Jayathilaka ◽  
A. Hilaal ◽  
S. Ramakrishna

Fabrication of Nanogenerators (NGs) using Electrospun polyvinylidene fluoride (PVDF) nanofibers for sensing and energy harvesting applications is a trending research due to its flexibility, biocompatibility, low-cost, etc. Different electrode materials, polymer composites had been proposed to increase the energy output. However, the contact area between the electrode material and nanofiber mat which helps to conduct more piezoelectric charges to the electrode surface are still unexplored especially at nanoscale level. In this paper, authors have proposed the use of low-cost carbon conductive paint to increase the contact area between the electrode and nanofiber mat. The electrode material is coated with conductive paint and the NG was fabricated with that electrode to compare the performances with conventional NG. Piezoelectric performance of the proposed NG has increased substantially as it generates an open circuit voltage [Formula: see text]) of 4.5[Formula: see text]V and short circuit current [Formula: see text]) of 25[Formula: see text]nA, whereas the conventional NG can only produce 1.6 [Formula: see text]) and 1.5[Formula: see text]nA [Formula: see text]). A drop test experiment was conducted, and the device consistency was verified experimentally.


Author(s):  
Mohammed Al-Rubaiai ◽  
Ryohei Tsuruta ◽  
Taewoo Nam ◽  
Umesh Gandhi ◽  
Xiaobo Tan

Abstract Inflatable structures provide significant volume and weight savings for future space and soft robotic applications. Structural health monitoring (SHM) of these structures is essential to ensuring safe operation, providing early warnings of damage, and measuring structural changes over time. In this paper, we propose the design of a single flexible strain sensor for distributed monitoring of an inflatable tube, in particular, the detection and localization of a kink should that occur. Several commercially available conductive materials, including 3D-printing filaments, conductive paint, and conductive fabrics are explored for their strain-sensing performance, where the resistance change under uniaxial tension is measured, and the corresponding gauge factor (GF) is characterized. Flexible strain sensors are then fabricated and integrated with an inflatable structure fabric using screen-printing or 3D-printing techniques, depending on the nature of the raw conductive material. Among the tested materials, the conductive paint shows the highest stability, with GF of 15 and working strain range of 2.28%. Finally, the geometry of the sensor is designed to enable distributed monitoring of an inflatable tube. In particular, for a given deformation magnitude, the sensor output shows a monotonic relationship with the location where the deformation is applied, thus enabling the monitoring of the entire tube with a single sensor.


2010 ◽  
Vol 57 (4) ◽  
pp. 204-208 ◽  
Author(s):  
M.N. Masri ◽  
Z.M. Yunus ◽  
A.R.M. Warikh ◽  
A.A. Mohamad

2012 ◽  
Vol 585 ◽  
pp. 392-396 ◽  
Author(s):  
Ankit Sahai ◽  
Rahul Swarup Sharma ◽  
K. Hans Raj ◽  
Narinder Kumar Gupta

The severe plastic deformation (SPD) is an effective approach for producing bulk nanostructured materials. The Equal Channel Angular Pressing (ECAP) is the most efficient SPD solution for achieving ultra-fined grained (UFG) material as billet undergoes severe and large deformation. The process parameters of ECAP (Channel Angle, angle of curvature, friction, number of passes, etc) influences major impact on the properties. In present work, the ECAP process is performed by pressing a specimen through a die consisting of two intersecting channels meeting at an angle φ and outer corner meeting at an angle ψ. Experiments with a circular specimen of Al6061 were conducted to investigate the changes in mechanical properties upto 2 passes. 3-D finite element simulations were also performed using metal forming software FORGE to study the evolution of strain in the specimen during the ECAP process. Simulation results were investigated by comparing them with experimental measured data in terms of load variations. The present work clearly shows that ECAP caused accentuated increase in Al6061 hardness and tensile strength during multi-pass processing. This study is beneficial in developing high quality, high strength products in manufacturing industry on account of its ability to change microstructure of materials.


Author(s):  
Yoshinori Ikemoto ◽  
Kunihiro Hoshino ◽  
Masahiko Makino ◽  
Ryouhei Fukasawa ◽  
Hidenobu Goto ◽  
...  

2012 ◽  
Vol 6 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Chuwang Su ◽  
Quanping Yuan ◽  
Weixing Gan ◽  
Dawang Dai ◽  
Jingda Huang ◽  
...  

Based on the reflection, absorption and multiple reflection attenuation principle of composite shielding, composite fiberboard with multiple electromagnetic shielding functions was developed according to the structure design, which was made by filling with mineral powder and stainless steel nets, and then sprayed single face with conductive paint. The results show that: electromagnetic shielding effectiveness of the product is above 60dB and reaches the better grade in 18.85MHz-1.46GHz; the product filled with magnetite powder has better comprehensive mechanical properties than the product filled with barite powder, and its modulus of rupture, modulus of elasticity, internal bonding strength and thickness swelling rate of water absorption all reach the Chinese national standards.


2020 ◽  
Vol 4 (3) ◽  
pp. 45 ◽  
Author(s):  
Ben Greenspan ◽  
Michele A. Lobo

Motion capture and the measurement of physical activity are common practices in the fields of physical therapy, sports medicine, biomechanics, and kinesiology. The data collected by these systems can be very important to understand how someone is recovering or how effective various assistive devices may be. Traditional motion capture systems are very expensive and only allow for data collection to be performed in a lab environment. In our previous research, we have tested the validity of a novel stitched stretch sensor using conductive thread. This paper furthers that research by validating a smart compression garment with integrated conductive paint stretch sensors to measure movement. These sensors are very inexpensive to fabricate and, when paired with an open-sourced wireless microcontroller, can enable a more affordable, accessible, and comfortable form of motion capture. A wearable garment like the one tested in this study could allow us to understand how meaningful, functional activities are performed in a natural setting.


Sign in / Sign up

Export Citation Format

Share Document