scholarly journals Increased 2-hydroxylation of estrogen is associated with lower body fat and increased lean body mass in postmenopausal women

Maturitas ◽  
2012 ◽  
Vol 72 (1) ◽  
pp. 66-71 ◽  
Author(s):  
Nicola Napoli ◽  
Swapna Vattikuti ◽  
Jayasree Yarramaneni ◽  
Tusar K. Giri ◽  
Srenath Nekkalapu ◽  
...  
2001 ◽  
Vol 86 (3) ◽  
pp. 1020-1025 ◽  
Author(s):  
Martin Brochu ◽  
André Tchernof ◽  
Isabelle J. Dionne ◽  
Cynthia K. Sites ◽  
Georgia H. Eltabbakh ◽  
...  

Although obesity is often associated with insulin resistance and a cluster of metabolic disturbances, the existence of a subgroup of healthy but obese individuals has been postulated. It is unclear why some obese individuals fail to show traditional risk factors associated with the insulin resistance syndrome despite having a very high accumulation of body fat. To address this issue, we identified and studied a subgroup of metabolically normal but obese (MNO) postmenopausal women to gain insight into potential physiological factors that may protect them against the development of obesity-related comorbidities. We carefully examined the metabolic characteristics of 43 obese, sedentary postmenopausal women (mean ± sd, 58.0± 6.0 yr). Subjects were classified as MNO or as metabolically abnormal obese (MAO) based on an accepted cut-point for insulin sensitivity (measured by the hyperinsulinemic/euglycemic clamp technique). Thereafter, we determined 1) body composition (fat mass and lean body mass), 2) body fat distribution (abdominal visceral and sc adipose tissue areas, midthigh sc adipose tissue and muscle attenuation), 3) plasma lipid-lipoprotein levels, 4) plasma glucose and insulin concentrations, 5) resting blood pressure, 6) peak oxygen consumption, 7) physical activity energy expenditure, and 8) age-related onset of obesity with a questionnaire as potential modulators of differences in the risk profile. We identified 17 MNO subjects who displayed high insulin sensitivity (11.2 ± 2.6 mg/min·kg lean body mass) and 26 MAO subjects with lower insulin sensitivity (5.7 ± 1.1 mg/min·kg lean body mass). Despite comparable total body fatness between groups (45.2 ± 5.3% vs. 44.8 ± 6.6%; P = NS), MNO individuals had 49% less visceral adipose tissue than MAO subjects (141 ± 53 vs. 211 ± 85 cm2; P < 0.01). No difference was noted between groups for abdominal sc adipose tissue (453 ± 126 vs. 442 ± 144 cm2; P = NS), total fat mass (38.1 ± 10.6 vs. 40.0 ± 11.8 kg), muscle attenuation (42.2± 2.6 vs. 43.6 ± 4.8 Houndsfield units), and physical activity energy expenditure (1060 ± 323 vs. 1045 ± 331 Cal/day). MNO subjects had lower fasting plasma glucose and insulin concentrations and lower insulin levels during the oral glucose tolerance test (P values ranging between 0.01–0.001). No difference was observed between groups for 2-h glucose levels and glucose area during the oral glucose tolerance test. MNO subjects showed lower plasma triglycerides and higher high density lipoprotein cholesterol concentrations than MAO individuals (P < 0.01 in both cases). Results from the questionnaire indicated that 48% of the MNO women presented an early onset of obesity (<20 yr old) compared with 29% of the MAO subjects (P = 0.09). Stepwise regression analysis showed that visceral adipose tissue and the age-related onset of obesity explained 22% and 13%, respectively, of the variance observed in insulin sensitivity (total r2 = 0.35; P < 0.05 in both cases). Our results support the existence of a subgroup of obese but metabolically normal postmenopausal women who display high levels of insulin sensitivity despite having a high accumulation of body fat. This metabolically normal profile is associated with a lower accumulation of visceral adipose tissue and an earlier age-related onset of obesity.


Author(s):  
Yiben Huang ◽  
Jiedong Ma ◽  
Xueting Hu ◽  
Jianing Wang ◽  
Xiaqi Miao ◽  
...  

2021 ◽  
pp. 1-27
Author(s):  
Masoome Piri Damaghi ◽  
Atieh Mirzababaei ◽  
Sajjad Moradi ◽  
Elnaz Daneshzad ◽  
Atefeh Tavakoli ◽  
...  

Abstract Background: Essential amino acids (EAAs) promote the process of regulating muscle synthesis. Thus, whey protein that contains higher amounts of EAA can have a considerable effect on modifying muscle synthesis. However, there is insufficient evidence regarding the effect of soy and whey protein supplementation on body composition. Thus, we sought to perform a meta-analysis of published Randomized Clinical Trials that examined the effect of whey protein supplementation and soy protein supplementation on body composition (lean body mass, fat mass, body mass and body fat percentage) in adults. Methods: We searched PubMed, Scopus, and Google Scholar, up to August 2020, for all relevant published articles assessing soy protein supplementation and whey protein supplementation on body composition parameters. We included all Randomized Clinical Trials that investigated the effect of whey protein supplementation and soy protein supplementation on body composition in adults. Pooled means and standard deviations (SD) were calculated using random-effects models. Subgroup analysis was applied to discern possible sources of heterogeneity. Results: After excluding non-relevant articles, 10 studies, with 596 participants, remained in this study. We found a significant increase in lean body mass after whey protein supplementation weighted mean difference (WMD: 0.91; 95% CI: 0.15, 1.67. P= 0.019). Subgroup analysis, for whey protein, indicated that there was a significant increase in lean body mass in individuals concomitant to exercise (WMD: 1.24; 95% CI: 0.47, 2.00; P= 0.001). There was a significant increase in lean body mass in individuals who received 12 or less weeks of whey protein (WMD: 1.91; 95% CI: 1.18, 2.63; P<0.0001). We observed no significant change between whey protein supplementation and body mass, fat mass, and body fat percentage. We found no significant change between soy protein supplementation and lean body mass, body mass, fat mass, and body fat percentage. Subgroup analysis for soy protein indicated there was a significant increase in lean body mass in individuals who supplemented for 12 or less weeks with soy protein (WMD: 1.48; 95% CI: 1.07, 1.89; P< 0.0001). Conclusion: Whey protein supplementation significantly improved body composition via increases in lean body mass, without influencing fat mass, body mass, and body fat percentage.


2021 ◽  
Vol 15 (10) ◽  
pp. 3245-3249
Author(s):  
Gökhan Atasever ◽  
Fatih Kiyici ◽  
Deniz Bedir ◽  
Fatih Ağduman

Aim: Biathlon is a sport that combines cross-country skiing and rifle shooting. The athlete is fast in the cross-country skiing section, in the gun shooting section, the heart rate should be low. This study aims to determine the hitting rate of the shots made with different training loads on low altitude in elite biathletes in terms of maximum speed and physiological variables. Methods: To evaluate shooting performances first with the resting pulse and then after 2.5 km skiing respectively with 50%, 70% and 100% pulse rate which is separately calculated for each athlete according to karvonen formula. Results: Our findings show that while there was negative relation between maximum speed and body fat there was a positive relation with lean body mass. It has been determined that low body fat percentage and high lean body mass are effective at the athletes’ maximum speed and the pulse level with the highest target shooting accuracy rate was at rest and 70% in the second level. Conclusion: Since the pulse of the athlete who comes to the shooting area cannot be reduced to a resting level in a short time, focusing the 70% pulse zone may be beneficial in terms of shooting accuracy and acceleration after the shot. The lowest results in target shooting accuracy were seen at 50% and 100% loads. Keywords: Athletes, performance, heart, rate, lean body mass.


2018 ◽  
Vol 7 (1) ◽  
pp. 150-158 ◽  
Author(s):  
Bolaji Lilian Ilesanmi-Oyelere ◽  
Jane Coad ◽  
Nicole Roy ◽  
Marlena Cathorina Kruger

JAMA Oncology ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 155 ◽  
Author(s):  
Neil M. Iyengar ◽  
Rhonda Arthur ◽  
JoAnn E. Manson ◽  
Rowan T. Chlebowski ◽  
Candyce H. Kroenke ◽  
...  

2018 ◽  
Vol 3 (3) ◽  
pp. 43 ◽  
Author(s):  
Angeliki Kavvoura ◽  
Nikolaos Zaras ◽  
Angeliki-Nikoletta Stasinaki ◽  
Giannis Arnaoutis ◽  
Spyridon Methenitis ◽  
...  

The rate of force development (RFD) is vital for power athletes. Lean body mass (LBM) is considered to be an essential contributor to RFD, nevertheless high RFD may be achieved by athletes with either high or low LBM. The aim of the study was to describe the relationship between lower-body LBM and RFD, and to compare RFD in taekwondo athletes and track and field (T&F) throwers, the latter having higher LBM when compared to taekwondo athletes. Nine taekwondo athletes and nine T&F throwers were evaluated for countermovement jumping, isometric leg press and leg extension RFD, vastus lateralis (VL), and medial gastrocnemius muscle architecture and body composition. Lower body LBM was correlated with RFD 0–250 ms (r = 0.81, p = 0.016). Taekwondo athletes had lower LBM and jumping power per LBM. RFD was similar between groups at 30–50 ms, but higher for throwers at 80–250 ms. RFD adjusted for VL thickness was higher in taekwondo athletes at 30 ms, but higher in throwers at 200–250 ms. These results suggest that lower body LBM is correlated with RFD in power trained athletes. RFD adjusted for VL thickness might be more relevant to evaluate in power athletes with low LBM, while late RFD might be more relevant to evaluate in athletes with higher LBM.


2000 ◽  
Vol 160 (21) ◽  
pp. 3265 ◽  
Author(s):  
Yoshitaka Toda ◽  
Neil Segal ◽  
Tamami Toda ◽  
Tadanobu Morimoto ◽  
Ryokei Ogawa

2020 ◽  
Vol 27 (3) ◽  
pp. 15-19
Author(s):  
Archana Khanna ◽  
Ankita Singh ◽  
Bhanu Pratap Singh ◽  
Faiz Khan

Abstract Introduction. The present study was aimed to compare the cardiorespiratory fitness levels (VO2max) between university level male and female volleyball players and to find its correlation with percentage body fat. Material and Methods. In the present cross-sectional study, male and female volleyball players (n = 15 each) aged 18-25 years were randomly selected from Teerthanker Mahaveer University, Moradabad, India. An equal number of sedentary individuals were also selected who did not indulge in any vigorous physical activity or training. Body height, body weight, body mass index (BMI), % lean body mass of players and sedentary individuals were recorded using standard methods. Percentage body fat was calculated using the sum of four skinfolds and VO2max was recorded using Queen’s college step test. Data were analysed using SPSS software version 20.0. Unpaired t-test was used for comparison between players and sedentary individuals and two-way ANOVA was used to examine interaction of status (active players and sedentary individuals) and gender on VO2max. Results. Players had higher mean values for % lean body mass and VO2max. Statistically, highly significant differences (p < 0.05) were observed between male and female players for all variables except BMI. Players had better cardiorespiratory fitness (VO2max) as compared to their sedentary counterparts. Conclusions. Significant differences exist between players and sedentary individuals for percentage body fat and percentage lean body mass. Cardiorespiratory fitness of players is negatively correlated with percentage body fat. Players have higher VO2max as compared to their sedentary counterparts.


2015 ◽  
Vol 45 (1) ◽  
pp. 187-195 ◽  
Author(s):  
Petr Kutáč ◽  
Martin Sigmund

Abstract The goals of this study were to evaluate the basic morphological variables of contemporary elite ice hockey players, compare the parameters of players in the top Russian ice hockey league (KHL) with those of the top Czech ice hockey league (ELH), and to evaluate the parameters of players according to their position in the game. The research participants included 30 KHL players (mean age: 27.1 ± 5.1 years) and 25 ELH players (mean age: 26.4 ± 5.8 years). We determined body height, body mass, and body composition (body fat, fat-free mass, segmental fat analysis). All measurements were performed at the end of preseason training. The KHL players had the following anthropometric characteristics: body height 182.97 ± 5.61 cm (forward) and 185.72 ± 3.57 cm (defenseman), body mass 89.70 ± 5.28 kg (forward) and 92.52 ± 4.01 kg (defenseman), body fat 10.76 ± 0.63 kg (forward) and 11.10 ± 0.48 kg (defenseman), fatfree mass 78.94 ± 4.65 kg (forward) and 81.42 ± 3.52 kg (defenseman). The values for ELH players were as follows: body height 182.06 ± 5.93 cm (forward) and 185.88 ± 7.13 cm (defenseman), body mass 88.47 ± 7.06 kg (forward) and 89.36 ± 10.91 kg (defenseman), body fat 12.57 ± 2.89 kg (forward) and 11.91 ± 3.10 kg (defenseman), fat-free mass 75.93 ± 6.54 kg (forward) and 77.46 ± 7.89 kg (defenseman). The results indicate that it is beneficial to ice hockey players to have increased body mass and lower body fat, which leads to higher muscle mass, thus enabling a player to perform at the highest level and meet the specific challenges of the game.


Sign in / Sign up

Export Citation Format

Share Document