scholarly journals TMEM67, TMEM237 and embigin in the complex with lactate transporter MCT1 are unique components of the photoreceptor outer segment plasma membrane

2021 ◽  
pp. 100088
Author(s):  
Nikolai P. Skiba ◽  
Martha A. Cady ◽  
Laurie Molday ◽  
John Y.S. Han ◽  
Tylor R. Lewis ◽  
...  

Channels ◽  
2014 ◽  
Vol 8 (6) ◽  
pp. 528-535 ◽  
Author(s):  
Ina Nemet ◽  
Guilian Tian ◽  
Yoshikazu Imanishi


2021 ◽  
Author(s):  
Poppy Datta ◽  
J. Thomas Cribbs ◽  
Seongjin Seo

AbstractNephrocystin (NPHP1) is a ciliary transition zone protein and its ablation causes nephronophthisis (NPHP) with partially penetrant retinal dystrophy. However, the precise requirements of NPHP1 in photoreceptors are not well understood. Here, we characterize retinal degeneration in a mouse model of NPHP1 and show that NPHP1 is required to prevent infiltration of inner segment plasma membrane proteins into the outer segment during the photoreceptor maturation. We demonstrate that Nphp1 gene-trap mutant mice, which were previously described as null, are in fact hypomorphs due to the production of a small quantity of functional mRNAs derived from nonsense-associated altered splicing and skipping of two exons including the one harboring the gene-trap. In homozygous mutant animals, inner segment plasma membrane proteins such as syntaxin-3 (STX3), synaptosomal-associated protein 25 (SNAP25), and interphotoreceptor matrix proteoglycan 2 (IMPG2) accumulate in the outer segment when outer segments are actively elongating. This phenotype, however, is spontaneously ameliorated after the outer segment elongation is completed. Retinal degeneration also occurs temporarily during the photoreceptor maturation but stops afterward. We further show that Nphp1 genetically interacts with Cep290, another NPHP gene, and that a reduction of Cep290 gene dose results in retinal degeneration that continues until adulthood in Nphp1 mutant mice. These findings demonstrate that NPHP1 is required for the confinement of inner segment plasma membrane proteins during the outer segment development, but its requirement diminishes as photoreceptors mature. Our study also suggests that additional mutations in other NPHP genes may influence the penetrance of retinopathy in human NPHP1 patients.



PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0246358
Author(s):  
Poppy Datta ◽  
J. Thomas Cribbs ◽  
Seongjin Seo

Nephrocystin (NPHP1) is a ciliary transition zone protein and its ablation causes nephronophthisis (NPHP) with partially penetrant retinal dystrophy. However, the precise requirements of NPHP1 in photoreceptors are not well understood. Here, we characterize retinal degeneration in a mouse model of NPHP1 and show that NPHP1 is required to prevent infiltration of inner segment plasma membrane proteins into the outer segment during the photoreceptor maturation. We demonstrate that Nphp1 gene-trap mutant mice, which were previously described as null, are likely hypomorphs due to the production of a small quantity of functional mRNAs derived from nonsense-associated altered splicing and skipping of two exons including the one harboring the gene-trap. In homozygous mutant animals, inner segment plasma membrane proteins such as syntaxin-3 (STX3), synaptosomal-associated protein 25 (SNAP25), and interphotoreceptor matrix proteoglycan 2 (IMPG2) accumulate in the outer segment when outer segments are actively elongating. This phenotype, however, is spontaneously ameliorated after the outer segment elongation is completed. Consistent with this, some photoreceptor cell loss (~30%) occurs during the photoreceptor maturation period but it stops afterward. We further show that Nphp1 genetically interacts with Cep290, another NPHP gene, and that a reduction of Cep290 gene dose results in retinal degeneration that continues until adulthood in Nphp1 mutant mice. These findings demonstrate that NPHP1 is required for the confinement of inner segment plasma membrane proteins during the outer segment development, but its requirement diminishes as photoreceptors mature. Our study also suggests that additional mutations in other NPHP genes may influence the penetrance of retinopathy in human NPHP1 patients.



2020 ◽  
Vol 9 (5) ◽  
pp. 1347 ◽  
Author(s):  
Norihiro Nagai ◽  
Sakiko Minami ◽  
Misa Suzuki ◽  
Hajime Shinoda ◽  
Toshihide Kurihara ◽  
...  

To explore predisease biomarkers, which may help screen for the risk of age-related macular degeneration (AMD) at very early stages, macular pigment optical density (MPOD) and photoreceptor outer segment (PROS) length were analyzed. Thirty late AMD fellow eyes, which are at high risk and represent the predisease condition of AMD, were evaluated and compared with 30 age-matched control eyes without retinal diseases; there was no early AMD involvement in the AMD fellow eyes. MPOD was measured using MPS2® (M.E. Technica Co. Ltd., Tokyo, Japan), and PROS length was measured based on optical coherence tomography images. MPOD levels and PROS length in the AMD fellow eyes were significantly lower and shorter, respectively, than in control eyes. MPOD and PROS length were positively correlated in control eyes (R = 0.386; p = 0.035) but not in AMD fellow eyes. Twenty (67%) AMD fellow eyes met the criteria of MPOD < 0.65 and/or PROS length < 35 μm, while only five (17%) control eyes did. After adjusting for age and sex, AMD fellow eyes more frequently satisfied the definition (p < 0.001; 95% confidence interval, 3.50–60.4; odds ratio, 14.6). The combination of MPOD and PROS length may be a useful biomarker for screening predisease AMD patients, although further studies are required in this regard.



2001 ◽  
Vol 72 (5) ◽  
pp. 573-579 ◽  
Author(s):  
Monica M Jablonski ◽  
Marshall J Graney ◽  
Stephen B Kritchevsky ◽  
Alessandro Iannaccone


PLoS ONE ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. e0237078
Author(s):  
Atsuro Uchida ◽  
Jagan A. Pillai ◽  
Robert Bermel ◽  
Stephen E. Jones ◽  
Hubert Fernandez ◽  
...  


2020 ◽  
Vol 21 (22) ◽  
pp. 8677
Author(s):  
Lital Remez ◽  
Ben Cohen ◽  
Mariela J. Nevet ◽  
Leah Rizel ◽  
Tamar Ben-Yosef

Photoreceptor disc component (PRCD) is a small protein which is exclusively localized to photoreceptor outer segments, and is involved in the formation of photoreceptor outer segment discs. Mutations in PRCD are associated with retinal degeneration in humans, mice, and dogs. The purpose of this work was to identify PRCD-binding proteins in the retina. PRCD protein-protein interactions were identified when implementing the Ras recruitment system (RRS), a cytoplasmic-based yeast two-hybrid system, on a bovine retina cDNA library. An interaction between PRCD and tubby-like protein 1 (TULP1) was identified. Co-immunoprecipitation in transfected mammalian cells confirmed that PRCD interacts with TULP1, as well as with its homolog, TUB. These interactions were mediated by TULP1 and TUB highly conserved C-terminal tubby domain. PRCD localization was altered in the retinas of TULP1- and TUB-deficient mice. These results show that TULP1 and TUB, which are involved in the vesicular trafficking of several photoreceptor proteins from the inner segment to the outer segment, are also required for PRCD exclusive localization to photoreceptor outer segment discs.



2013 ◽  
Vol 54 (3) ◽  
pp. 2276 ◽  
Author(s):  
Magdalena M. Olchawa ◽  
Anja M. Herrnreiter ◽  
Christine M. B. Skumatz ◽  
Mariusz Zareba ◽  
Tadeusz J. Sarna ◽  
...  


2021 ◽  
Author(s):  
Nafisa Nuzhat ◽  
Kristof Van Schil ◽  
Sandra Liakopoulos ◽  
Miriam Bauwens ◽  
Alfredo Dueñas Rey ◽  
...  

Ciliopathies often comprise retinal degeneration since the photoreceptor outer segment is an adapted primary cilium. CEP162 is a distal end centriolar protein required for proper transition zone assembly during ciliogenesis and whose loss causes ciliopathy in zebrafish. CEP162 has so far not been implicated in human disease. Here, we identified a homozygous CEP162 frameshift variant, c.1935dupA (p.(E646R*5)), in retinitis pigmentosa patients from two unrelated Moroccan families, likely representing a founder allele. We found that even though mRNA levels were reduced, the truncated CEP162-E646R*5 protein was expressed and localized to the mitotic spindle during mitosis, but not at the basal body of the cilium. In CEP162 knockdown cells, expression of the truncated CEP162-E646R*5 protein is unable to restore ciliation indicating its loss of function at the cilium. In patient fibroblasts, cilia overcome the absence of CEP162 from the primary cilium by delaying ciliogenesis through the persistence of CP110 at the mother centriole. The patient fibroblasts are ultimately able to extend some abnormally long cilia that are missing key transition zone components. Defective transition zone formation likely disproportionately affects the long-living ciliary outer segment of photoreceptors resulting in retinal dystrophy. CEP162 is expressed in human retina, and we show that wild-type CEP162, but not truncated CEP162-E646R*5, specifically localizes to the distal end of centrioles of mouse photoreceptor cilia. Together, our genetic, cell-based, and in vivo modeling establish that CEP162 deficiency causes retinal ciliopathy in humans.



Sign in / Sign up

Export Citation Format

Share Document