Chirp modulation enabled turbidity measurement for large scale monitoring of fresh water

Measurement ◽  
2021 ◽  
pp. 109989
Author(s):  
Junxuan Wei ◽  
Fei Qin ◽  
Gang Li ◽  
Xujie Li ◽  
Xiaobo Liu ◽  
...  
2021 ◽  
pp. 1
Author(s):  
Yaru Guo ◽  
Yuanlong Li ◽  
Fan Wang ◽  
Yuntao Wei

AbstractNingaloo Niño – the interannually occurring warming episode in the southeast Indian Ocean (SEIO) – has strong signatures in ocean temperature and circulation and exerts profound impacts on regional climate and marine biosystems. Analysis of observational data and eddy-resolving regional ocean model simulations reveals that the Ningaloo Niño/Niña can also induce pronounced variability in ocean salinity, causing large-scale sea surface salinity (SSS) freshening of 0.15–0.20 psu in the SEIO during its warm phase. Model experiments are performed to understand the underlying processes. This SSS freshening is mutually caused by the increased local precipitation (~68%) and enhanced fresh-water transport of the Indonesian Throughflow (ITF; ~28%) during Ningaloo Niño events. The effects of other processes, such as local winds and evaporation, are secondary (~18%). The ITF enhances the southward fresh-water advection near the eastern boundary, which is critical in causing the strong freshening (> 0.20 psu) near the Western Australian coast. Owing to the strong modulation effect of the ITF, SSS near the coast bears a higher correlation with the El Niño-Southern Oscillation (0.57, 0.77, and 0.70 with Niño-3, Niño-4, and Niño-3.4 indices, respectively) than sea surface temperature (-0.27, -0.42, and -0.35) during 1993-2016. Yet, an idealized model experiment with artificial damping for salinity anomaly indicates that ocean salinity has limited impact on ocean near-surface stratification and thus minimal feedback effect on the warming of Ningaloo Niño.


1991 ◽  
Vol 37 (127) ◽  
pp. 357-367
Author(s):  
J.-L. Tison ◽  
E. M. Morris ◽  
R. Souchez ◽  
J. Jouzel

AbstractResults from a detailed profile in a 5.54 m multi-year sea-ice core from the rift area in the southern part of George VI Ice Shelf are presented. Stratigraphy, stable isotopes and Na content are used to investigate the growth processes of the ice cover and to relate them to melting processes at the bottom of the ice shelf.The thickest multi-year sea ice in the sampling area appears to be second-year sea ice that has survived one melt season. Combined salinity/stable-isotope analyses show large-scale sympathetic fluctuations that can be related to the origin of the parent water. Winter accretion represents half of the core length and mainly consists of frazil ice of normal sea-water origin. However, five major dilution events of sea water, with fresh-water input from the melting base of the ice shelf reaching 20% on two occasions, punctuate this winter accretion. Two of them correspond to platelet-ice production, which is often related to the freezing of ascending supercooled water from the bottom of the ice shelf.Brackish ice occurs between 450 and 530 cm in the core. It is demonstrated that this results from the freezing of brackish water (Jeffries and others, 1989) formed by mixing of normal sea water with melted basal shelf ice, with dilution percentages of maximum 80% fresh water.


2014 ◽  
Vol 488-489 ◽  
pp. 970-974
Author(s):  
Gang Wang ◽  
Jian Zhong Shi

the large-scale application of non-grid-connected wind power in sea water desalination industry has not only solved the difficulty in grid connection of wind power, but also can be an inexhaustible clean energy supply for the sea water desalination. Such application, breaking through the traditional sea water desalination technology and wind power development ideas and realizing the 100% local use of renewable energies, is a perfect combination of the new energy industry and the power consumption industry. The large-scale industrialization application of non-grid-connected wind power sea water desalination can not only maximize the efficiency of wind power and realize the unification of social benefit, environmental benefit and economic benefit, but also is of great strategic significance in accelerating the transformation of the economic development mode of China, and meanwhile, plays a leading role in the diversified development of the world wind power industry. 1. High-energy consumption factors restrict the development of sea water desalination Sea water desalination is a source-opening incremental technology for realizing the utilization of water resources, which can increase the total amount of fresh water and is not limited by time, space and climate with good water quality, and can guarantee the stable water supply of drinking water for coastal residents and industrial water supplementation. Since sea water desalination is the substitutional and incremental technology of fresh water resources, many countries are attaching more and more importance on it. With the rapid development of the economy and society of China, especially with the acceleration of urbanization, some coastal developed areas and large cities near the sea are having a greater and greater demand on water resources. In this condition, the development of sea water desalination has a great strategic significance in the supplementation of water resources in the sustainable development process of these areas[1,2].


2013 ◽  
Vol 821-822 ◽  
pp. 1098-1101
Author(s):  
Wei Xing Li ◽  
Jing Huan Ma ◽  
Ying Liu ◽  
Qing Tong Ren ◽  
Zhan Sheng Ma

Reverse Osmosis (RO) is an effective method to get fresh water from seawater or brackish water. The uncontrolled discharge of RO concentrated brine can contaminate water aquifers and damage marine ecosystems. The techniques to treat or utilize the rejected brine are the research focus in recent years. This paper tried to give an overview of latest development in this filed in order to provide references for its actual application in large-scale engineering.


2007 ◽  
Vol 578 ◽  
pp. 35-65 ◽  
Author(s):  
P. J. THOMAS ◽  
P. F. LINDEN

Laboratory experiments simulating gravity-driven coastal surface currents produced by estuarine fresh-water discharges into the ocean are discussed. The currents are generated inside a rotating tank filled with salt water by the continuous release of buoyant fresh water from a small source at the fluid surface. The height, the width and the length of the currents are studied as a function of the background rotation rate, the volumetric discharge rate and the density difference at the source. Two complementary experimental data sets are discussed and compared with each other. One set of experiments was carried out in a tank of diameter 1 m on a small-scale rotating turntable. The second set of experiments was conducted at the large-scale Coriolis Facility (LEGI, Grenoble) which has a tank of diameter 13 m. A simple geostrophic model predicting the current height, width and propagation velocity is developed. The experiments and the model are compared with each other in terms of a set of non-dimensional parameters identified in the theoretical analysis of the problem. These parameters enable the corresponding data of the large-scale and the small-scale experiments to be collapsed onto a single line. Good agreement between the model and the experiments is found.


2019 ◽  
Vol 65 (4) ◽  
pp. 363-388
Author(s):  
G. V. Alekseev ◽  
A. V. Pnyushkov ◽  
A. V. Smirnov ◽  
A. E. Vyazilova ◽  
N. I. Glok

Inter-decadal changes in the water layer of Atlantic origin and freshwater content (FWC) in the upper 100 m layer were traced jointly to assess the influence of inflows from the Atlantic on FWC changes based on oceanographic observations in the Arctic Basin for the 1960s – 2010s. For this assessment, we used oceanographic data collected at the Arctic and Antarctic Research Institute (AARI) and the International Arctic Research Center (IARC). The AARI data for the decades of 1960s – 1990s were obtained mainly at the North Pole drifting ice camps, in high-latitude aerial surveys in the 1970s, as well as in ship-based expeditions in the 1990s. The IARC database contains oceanographic measurements acquired using modern CTD (Conductivity – Temperature – Depth) systems starting from the 2000s. For the reconstruction of decadal fields of the depths of the upper and lower 0 °С isotherms and FWC in the 0–100 m layer in the periods with a relatively small number of observations (1970s – 1990s), we used a climatic regression method based on the conservativeness of the large-scale structure of water masses in the Arctic Basin. Decadal fields with higher data coverage were built using the DIVAnd algorithm. Both methods showed almost identical results when compared.  The results demonstrated that the upper boundary of the Atlantic water (AW) layer, identified with the depth of zero isotherm, raised everywhere by several tens of meters in 1990s – 2010s, when compared to its position before the start of warming in the 1970s. The lower boundary of the AW layer, also determined by the depth of zero isotherm, became deeper. Such displacements of the layer boundaries indicate an increase in the volume of water in the Arctic Basin coming not only through the Fram Strait, but also through the Barents Sea. As a result, the balance of water masses was disturbed and its restoration had to occur due to the reduction of the volume of the upper most dynamic freshened layer. Accordingly, the content of fresh water in this layer should decrease. Our results confirmed that FWC in the 0–100 m layer has decreased to 2 m in the Eurasian part of the Arctic Basin to the west of 180° E in the 1990s. In contrast, the FWC to the east of 180° E and closer to the shores of Alaska and the Canadian archipelago has increased. These opposite tendencies have been intensified in the 2000s and the 2010s. A spatial correlation between distributions of the FWC and the positions of the upper AW boundary over different decades confirms a close relationship between both distributions. The influence of fresh water inflow is manifested as an increase in water storage in the Canadian Basin and the Beaufort Gyre in the 1990s – 2010s. The response of water temperature changes from the tropical Atlantic to the Arctic Basin was traced, suggesting not only the influence of SST at low latitudes on changes in FWC, but indicating the distant tropical impact on Arctic processes. 


1991 ◽  
Vol 37 (127) ◽  
pp. 357-367 ◽  
Author(s):  
J.-L. Tison ◽  
E. M. Morris ◽  
R. Souchez ◽  
J. Jouzel

AbstractResults from a detailed profile in a 5.54 m multi-year sea-ice core from the rift area in the southern part of George VI Ice Shelf are presented. Stratigraphy, stable isotopes and Na content are used to investigate the growth processes of the ice cover and to relate them to melting processes at the bottom of the ice shelf.The thickest multi-year sea ice in the sampling area appears to be second-year sea ice that has survived one melt season. Combined salinity/stable-isotope analyses show large-scale sympathetic fluctuations that can be related to the origin of the parent water. Winter accretion represents half of the core length and mainly consists of frazil ice of normal sea-water origin. However, five major dilution events of sea water, with fresh-water input from the melting base of the ice shelf reaching 20% on two occasions, punctuate this winter accretion. Two of them correspond to platelet-ice production, which is often related to the freezing of ascending supercooled water from the bottom of the ice shelf.Brackish ice occurs between 450 and 530 cm in the core. It is demonstrated that this results from the freezing of brackish water (Jeffries and others, 1989) formed by mixing of normal sea water with melted basal shelf ice, with dilution percentages of maximum 80% fresh water.


2015 ◽  
Vol 55 (2) ◽  
pp. 485
Author(s):  
Abbas Zeinijahromi ◽  
Pavel Bedrikovetski

Excessive water production is a major factor in reduced well productivity. This can result from water channelling from the water table to the well through natural fractures or faults, water breakthrough in high permeability zones, or water coning. The use of foams or gels for controlling water production through high-permeable layers has been tested successfully in several field cases. A large treatment volume, however, is required to block the water influx that generally involves high operational and material costs. This extended abstract proposes a new cost-effective method of creating a low-permeable barrier against the produced water with induced formation damage. The method includes applying induced formation damage to block the water influx without hindering the oil production. This can be achieved by injection of a small slug of fresh water into the water-producing layer. This results in release of in situ fines from the matrix, which can decrease permeability and create a local low-permeable barrier to the producing water. In large-scale approximation, water injection with induced fines migration is analogous to polymer flooding. This analogy is used to model the fresh water with induced formation damage. Sensitivity studies showed that the injection of 0.01 PVI of fresh water resulted in the blockage of the water-producing layer and an incremental recovery by 8% in field case A, with respect to the standard production scenario. The authors found that the incremental gas recovery with induced formation damage was sensitive to reservoir heterogeneity, permeability reduction and slug volume.


2004 ◽  
Vol 16 (4) ◽  
pp. 401-413 ◽  
Author(s):  
IAN SIMMONDS ◽  
JOHN C. KING

The hemispheric and regional atmospheric circulation influences the Southern Ocean in many and profound ways, including intense air-sea fluxes of momentum, energy, fresh water and dissolved gases. The Southern Ocean ventilates a large fraction of the world ocean and hence these influences are spread globally. We use the NCEP-2 reanalysis data set to diagnose aspects of the large-scale atmospheric structure and variability and explore how these impact on the Southern Ocean. We discuss how the ‘Southern Annular Mode’ and the ‘Pacific-South American’ pattern influence the Southern Ocean, particularly in the eastern Pacific. We review the importance of atmospheric eddies in Southern Ocean climate, and the role they play in the transport of mechanical energy into the ocean. The fluxes of fresh water across the air-sea boundary influence strongly the processes of water mass formation. It is shown that climatological precipitation exceeds evaporation over most of the Southern Ocean. When averaged over the ocean from 50°S to the Antarctic coast the annual mean excess is 0.80 mm day−1. The magnitude of the flux displays only a small measure of seasonality, and its largest value of 0.92 mm day−1 occurs in summer.


Sign in / Sign up

Export Citation Format

Share Document