Smart COD sensor using UV-Vis spectroscopy against optical window surface contamination

Measurement ◽  
2021 ◽  
pp. 110125
Author(s):  
Zhaofeng Kang ◽  
Zixing He ◽  
Yizhang Wen ◽  
Min Liao ◽  
Xiaoyu Li ◽  
...  
Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5261
Author(s):  
Manas Kumar Bera ◽  
Yoshikazu Ninomiya ◽  
Masayoshi Higuchi

A heterobimetallic supramolecular polymer (polyRuFe) with alternately complexed Ru(II) and Fe(II) is prepared following a stepwise synthetic route through harnessing first the strongly binding metal ion Ru(II) and then the weakly binding metal ion Fe(II). A high yield of product is achieved in each step. The heterometal ions are incorporated into the polymer chain in identical coordination environments formed by two 2,2′:6′,2″-terpyridine moieties. Characterization is accomplished by NMR spectroscopy, MALDI–TOF mass spectrometry, UV–Vis spectroscopy, and cyclic voltammetry. PolyRuFe shows a wide optical window (λ = 311–577 nm) and a broad distinct reversible redox nature of two types, originated from the coupling of the two heterometallic segments into the polymer chain. Such characteristics of polyRuFe suggest its potential for various electrochemical and electro-optical applications.


2019 ◽  
Vol 41 (5) ◽  
pp. 295-302 ◽  
Author(s):  
Mark George ◽  
Helmuth Treichel ◽  
David Bohling ◽  
Avery Goldstein ◽  
Herbert Litvak ◽  
...  

2020 ◽  
Vol 92 (2) ◽  
pp. 20402
Author(s):  
Kaoutar Benthami ◽  
Mai ME. Barakat ◽  
Samir A. Nouh

Nanocomposite (NCP) films of polycarbonate-polybutylene terephthalate (PC-PBT) blend as a host material to Cr2O3 and CdS nanoparticles (NPs) were fabricated by both thermolysis and casting techniques. Samples from the PC-PBT/Cr2O3 and PC-PBT/CdS NCPs were irradiated using different doses (20–110 kGy) of γ radiation. The induced modifications in the optical properties of the γ irradiated NCPs have been studied as a function of γ dose using UV Vis spectroscopy and CIE color difference method. Optical dielectric loss and Tauc's model were used to estimate the optical band gaps of the NCP films and to identify the types of electronic transition. The value of optical band gap energy of PC-PBT/Cr2O3 NCP was reduced from 3.23 to 3.06 upon γ irradiation up to 110 kGy, while it decreased from 4.26 to 4.14 eV for PC-PBT/CdS NCP, indicating the growth of disordered phase in both NCPs. This was accompanied by a rise in the refractive index for both the PC-PBT/Cr2O3 and PC-PBT/CdS NCP films, leading to an enhancement in their isotropic nature. The Cr2O3 NPs were found to be more effective in changing the band gap energy and refractive index due to the presence of excess oxygen atoms that help with the oxygen atoms of the carbonyl group in increasing the chance of covalent bonds formation between the NPs and the PC-PBT blend. Moreover, the color intensity, ΔE has been computed; results show that both the two synthesized NCPs have a response to color alteration by γ irradiation, but the PC-PBT/Cr2O3 has a more response since the values of ΔE achieved a significant color difference >5 which is an acceptable match in commercial reproduction on printing presses. According to the resulting enhancement in the optical characteristics of the developed NCPs, they can be a suitable candidate as activate materials in optoelectronic devices, or shielding sheets for solar cells.


2002 ◽  
Author(s):  
M. Hoover ◽  
M. McCawley ◽  
D. Yereb ◽  
S. Tinkle ◽  
S. Beaton ◽  
...  

Author(s):  
Torrey Holland ◽  
Dennis Watson ◽  
P Sivakumar ◽  
Ali Abdul-Munaim ◽  
Robinson Karunanithy
Keyword(s):  

MRS Advances ◽  
2020 ◽  
Vol 5 (63) ◽  
pp. 3353-3360
Author(s):  
Susana Helena Arellano Ramírez ◽  
Perla García Casillas ◽  
Christian Chapa González

AbstractA significant area of research is biomedical applications of nanoparticles which involves efforts to control the physicochemical properties through simple and scalable processes. Gold nanoparticles have received considerable attention due to their unique properties that they exhibit based on their morphology. Gold nanospheres (AuNSs) and nanorods (AuNRs) were prepared with a seed-mediated method followed of polyethylene glycol (PEG)-coating. The seeds were prepared with 0.1 M cetyltrimethyl-ammonium bromide (CTAB), 0.005 M chloroauric acid (HAuCl4), and 0.01 M sodium borohydride (NaBH4) solution. Gold nanoparticles with spherical morphology was achieved by growth by aggregation at room temperature, while to achieve the rod morphology 0.1 M silver nitrate (AgNO3) and 0.1 M ascorbic acid solution were added. The gold nanoparticles obtained by the seed-mediated synthesis have spherical or rod shapes, depending on the experimental conditions, and a uniform particle size. Surface functionalization was developed using polyethylene glycol. Morphology, and size distribution of AuNPs were evaluated by Field Emission Scanning Electron Microscopy. The average size of AuNSs, and AuNRs was 7.85nm and 7.96 x 31.47nm respectively. Fourier transform infrared spectrometry was performed to corroborate the presence of PEG in the AuNPs surface. Additionally, suspensions of AuNSs and AuNRs were evaluated by UV-Vis spectroscopy. Gold nanoparticles were stored for several days at room temperature and it was observed that the colloidal stability increased once gold nanoparticles were coated with PEG due to the shield formed in the surface of the NPs and the increase in size which were 9.65±1.90 nm of diameter for AuNSs and for AuNRs were 29.03±5.88 and 8.39±1.02 nm for length and transverse axis, respectively.


2003 ◽  
Vol 771 ◽  
Author(s):  
G. Panzera ◽  
S. Conoci ◽  
S. Coffa ◽  
B. Pignataro ◽  
S. Sortino ◽  
...  

AbstractThin films (1-24 layers) of bis-zinc ethane-bridged porphyrin dimer (1) have been transferred on solid surfaces, by the Langmuir- Schäfer (LS) horizontal method. The related surface pressurearea isotherm curve shows that in dependence of the film pressure different condensed phases may occur in the monolayer. The inspection of the monolayer by Brewster Angle Microscopy (BAM) reveals the presence of peculiar networks whose structural features seemingly change upon film compression. On the other hand, the Scanning Force Microscopy (SFM) analysis performed on LS films shows fractal networks constituted by nanoscopic supramolecular aggregates, whose shape and size depend again on the LS deposition surface pressure. Finally, also UV-vis spectroscopy measurements indicates that the absorption is almost linearly related to the film thickness that is directly connected to the surface pressure.


2017 ◽  
Vol 13 (2) ◽  
pp. 4671-4677 ◽  
Author(s):  
A. M. Abdelghany ◽  
A.H. Oraby ◽  
Awatif A Hindi ◽  
Doaa M El-Nagar ◽  
Fathia S Alhakami

Bimetallic nanoparticles of silver (Ag) and gold (Au) were synthesized at room temperature using Curcumin. Reduction process of silver and gold ions with different molar ratios leads to production of different nanostructures including alloys and core-shells. Produced nanoparticles were characterized simultaneously with FTIR, UV/vis. spectroscopy, transmission electron microscopy (TEM), and Energy-dispersive X-ray (EDAX). UV/vis. optical absorption spectra of as synthesized nanoparticles reveals presence of surface palsmon resonance (SPR) of both silver at (425 nm) and gold at (540 nm) with small shift and broadness of gold band after mixing with resucing and capping agent in natural extract which suggest presence of bimetallic nano structure (Au/Ag). FTIR and EDAX data approve the presence of bimetallic nano structure combined with curcumin extract. TEM micrographs shows that silver and gold can be synthesized separately in the form of nano particles using curcumin extract. Synthesis of gold nano particles in presence of silver effectively enhance and control formation of bi-metallic structure.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Jothi M ◽  
Sowmiya K

Nickel Oxide (NiO) is an important transition metal oxide with cubic lattice structure. NiO is thermally stable that is suitable for tremendous applications in the field of optic, ceramic,glass, electro-chromic coatings, plastics, textiles, nanowires, nanofibers, electronics,energy technology, bio-medicine, magnetism and so on. In this present study, NiO nanoparticles were successfully synthesized by sol-gel technique. Nano-sols were prepared by dissolving Nickel-Chloride [NiCl2.6H2O] in NaOH solvent and were converted into nano structured gel on precipitation. A systematic change in preparation parameters like calcination temperature, time, pH value has been noticed in order to predict the influence on crystallite size. Then the prepared samples were characterized by the X-ray Diffraction Spectroscopic (XRD), UV-VIS Spectroscopy, Fourier Transform Infra-Red Spectroscopy (FTIR), Energy Dispersive X-ray Spectroscopy (EDX), Scanning Electron Microscopy (SEM) and Particle Size Analyzer (PSA). From XRD, the average crystalline-size has been calculated by Debye-Scherrer Equation and it was found to be 12.17 nm and the band gap energy of Nickel oxide (NiO) from UV studies reveals around 3.85 eV. Further, EDX and FTIR studies, confirm the presences of NiO nanoparticles. The SEM study exhibits the spherical like morphology of Nickel oxide (NiO). Further from PSA, the mean value of NiO nanoparticles has been determined.


Sign in / Sign up

Export Citation Format

Share Document