Elastic fields of a wedge disclination in a functionally graded cylinder

2021 ◽  
Vol 157 ◽  
pp. 103835
Author(s):  
Mao S. Wu
2005 ◽  
Vol 492-493 ◽  
pp. 391-396 ◽  
Author(s):  
H.M. Yin ◽  
L.Z. Sun ◽  
Glaucio H. Paulino

A micromechanics-based elastic model is developed for two-phase functionally graded composites with locally pair-wise particle interactions. In the gradation direction, there exist two microstructurally distinct zones: particle-matrix zone and transition zone. In the particle-matrix zone, the homogenized elastic fields are obtained by integrating the pair-wise interactions from all other particles over the representative volume element. In the transition zone, a transition function is constructed to make the homogenized elastic fields continuous and differentiable in the gradation direction. The averaged elastic fields are solved for transverse shear loading and uniaxial loading in the gradation direction.


2006 ◽  
Vol 74 (3) ◽  
pp. 389-398 ◽  
Author(s):  
Hamed Hatami-Marbini ◽  
Hossein M. Shodja

The determination of the thermo-mechanical stress field in and around a spherical/cylindrical inhomogeneity surrounded by a functionally graded (FG) coating, which in turn is embedded in an infinite medium, is of interest. The present work, in the frame work of Boussinesq/Papkovich-Neuber displacement potentials method, discovers the potential functions by which not only the relevant boundary value problems (BVPs) in the literature, but also the more complex problem of the coated inhomogeneities with FG coating and sliding interfaces can be treated in a unified manner. The thermo-elastic fields pertinent to the inhomogeneities with multiple homogeneous coatings and various combinations of perfect/sliding interfaces can be computed exactly. Moreover, when the coatings are inhomogeneous, as long as the spatial variation of the thermo-elastic properties of the transition layer is describable by a piecewise continuous function with a finite number of jumps, an accurate solution can be obtained. The influence of interface conditions, stiffness of the core, spatial distributions of thermal expansion coefficient and shear modulus of FG coating, and loading condition on the stress field will be examined.


2004 ◽  
Author(s):  
H. M. Yin ◽  
L. Z. Sun ◽  
G. H. Paulino

A micromechanics-based elastic model is developed for two-phase functionally graded materials with locally pair-wise interactions between particles. While the effective material properties change gradually along the gradation direction, there exist two microstructurally distinct zones: particle-matrix zone and transition zone. In the particle-matrix zone, pair-wise interactions between particles are employed using a modified Green’s function method. By integrating the interactions from all other particles over the representative volume element, the homogenized elastic fields are obtained. The effective stiffness distribution over the gradation direction is further derived. In the transition zone, a transition function is constructed to make the homogenized elastic fields continuous and differentiable in the gradation direction. The model prediction is compared with other models and experimental data to demonstrate the capability of the proposed method.


2020 ◽  
Vol 22 (4) ◽  
pp. 1197-1222
Author(s):  
V. Yildirim

AbstractThe present study aims to provide a deeper understanding for the thermo-mechanical analysis of spheres made of non-homogeneous isotropic materials. To this end, Navier equations are solved analytically based on the spherically-symmetric plain-strain assumptions and closed-form formulas are proposed for the elastic fields in a simple-power-law graded spheres subjected to steady-state thermal and internal/external pressure loads. A comprehensive parametric study is then performed with both functionally-graded hypothetical and physical materials. Two benchmark examples are reconsidered with hypothetically chosen inhomogeneity indexes. Effects of inhomogeneity indexes are reviewed in these examples. Differently from the literature, thickness effects are also examined under separate and combined loads together with the thermo-mechanical behavioral differences in spheres and cylinders. Finally three physical metal-ceramic pairs are studied originally with appropriate inhomogeneity indexes which are defined as the inner surface is full ceramic and the outer surface is full metal. Results are presented in graphical and tabular forms.


Author(s):  
Carlos Alberto Dutra Fraga Filho ◽  
Fernando César Meira Menandro ◽  
Rivânia Hermógenes Paulino de Romero ◽  
Juan Sérgio Romero Saenz

Sign in / Sign up

Export Citation Format

Share Document