scholarly journals The physical nature of subjective experience and its interaction with the brain

2019 ◽  
Vol 125 ◽  
pp. 57-69 ◽  
Author(s):  
Fredric Schiffer
NeuroSci ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 224-234
Author(s):  
Fredric Schiffer

In this paper I will address questions about will, agency, choice, consciousness, relevant brain regions, impacts of disorders, and their therapeutics, and I will do this by referring to my theory, Dual-brain Psychology, which posits that within most of us there exist two mental agencies with different experiences, wills, choices, and behaviors. Each of these agencies is associated as a trait with one brain hemisphere (either left or right) and its composite regions. One of these agencies is more adversely affected by past traumas, and is more immature and more symptomatic, while the other is more mature and healthier. The theory has extensive experimental support through 17 peer-reviewed publications with clinical and non-clinical research. I will discuss how this theory relates to the questions about the nature of agency and I will also discuss my published theory on the physical nature of subjective experience and its relation to the brain, and how that theory interacts with Dual-Brain Psychology, leading to further insights into our human nature and its betterment.


2007 ◽  
Vol 33 (2-3) ◽  
pp. 433-456 ◽  
Author(s):  
Adam J. Kolber

A neurologist with abdominal pain goes to see a gastroenterologist for treatment. The gastroenterologist asks the neurologist where it hurts. The neurologist replies, “In my head, of course.” Indeed, while we can feel pain throughout much of our bodies, pain signals undergo most of their processing in the brain. Using neuroimaging techniques like functional magnetic resonance imaging (“fMRI”) and positron emission tomography (“PET”), researchers have more precisely identified brain regions that enable us to experience physical pain. Certain regions of the brain's cortex, for example, increase in activation when subjects are exposed to painful stimuli. Furthermore, the amount of activation increases with the intensity of the painful stimulus. These findings suggest that we may be able to gain insight into the amount of pain a particular person is experiencing by non-invasively imaging his brain.Such insight could be particularly valuable in the courtroom where we often have no definitive medical evidence to prove or disprove claims about the existence and extent of pain symptoms.


2019 ◽  
Author(s):  
Michael Elliott

The binding problem refers to the puzzle of how the brain combines objects’ properties such as motion, color, shape, location, sound, etc., from diverse regions of the brain and forms a unified subjective experience. Holographic physical systems, recently discovered darlings of theoretical physics, began with research into black holes but have since evolved into the study of condensed matter systems in the laboratory like superfluids and superconductors. A primary example is the AdS/CFT correspondence. A recent conjecture of this correspondence suggests that holographic systems combine information from across a boundary surface, sort out the simplest description of said information, and, in turn, use it to determine the geometry of spacetime itself in the interior - a kind of geometric hologram. Although we would never tend to think of these two processes as related, in this paper we point out ten similarities between the two and show that holographic systems are the only physical systems that match the subjective and computational characteristics of the binding problem.


2021 ◽  
Vol 15 ◽  
Author(s):  
Peter A. Robinson ◽  
James A. Henderson ◽  
Natasha C. Gabay ◽  
Kevin M. Aquino ◽  
Tara Babaie-Janvier ◽  
...  

Spectral analysis based on neural field theory is used to analyze dynamic connectivity via methods based on the physical eigenmodes that are the building blocks of brain dynamics. These approaches integrate over space instead of averaging over time and thereby greatly reduce or remove the temporal averaging effects, windowing artifacts, and noise at fine spatial scales that have bedeviled the analysis of dynamical functional connectivity (FC). The dependences of FC on dynamics at various timescales, and on windowing, are clarified and the results are demonstrated on simple test cases, demonstrating how modes provide directly interpretable insights that can be related to brain structure and function. It is shown that FC is dynamic even when the brain structure and effective connectivity are fixed, and that the observed patterns of FC are dominated by relatively few eigenmodes. Common artifacts introduced by statistical analyses that do not incorporate the physical nature of the brain are discussed and it is shown that these are avoided by spectral analysis using eigenmodes. Unlike most published artificially discretized “resting state networks” and other statistically-derived patterns, eigenmodes overlap, with every mode extending across the whole brain and every region participating in every mode—just like the vibrations that give rise to notes of a musical instrument. Despite this, modes are independent and do not interact in the linear limit. It is argued that for many purposes the intrinsic limitations of covariance-based FC instead favor the alternative of tracking eigenmode coefficients vs. time, which provide a compact representation that is directly related to biophysical brain dynamics.


2020 ◽  
Author(s):  
Bahar Azari ◽  
Christiana Westlin ◽  
Ajay Satpute ◽  
J. Benjamin Hutchinson ◽  
Philip A. Kragel ◽  
...  

Machine learning methods provide powerful tools to map physical measurements to scientific categories. But are such methods suitable for discovering the ground truth about psychological categories? We use the science of emotion as a test case to explore this question. In studies of emotion, researchers use supervised classifiers, guided by emotion labels, to attempt to discover biomarkers in the brain or body for the corresponding emotion categories. This practice relies on the assumption that the labels refer to objective categories that can be discovered. Here, we critically examine this approach across three distinct datasets collected during emotional episodes- measuring the human brain, body, and subjective experience- and compare supervised classification studies with those from unsupervised clustering in which no a priori labels are assigned to the data. We conclude with a set of recommendations to guide researchers towards meaningful, data-driven discoveries in the science of emotion and beyond.


Neurology ◽  
2017 ◽  
Vol 88 (7) ◽  
pp. 685-691 ◽  
Author(s):  
Brett L. Foster ◽  
Josef Parvizi

Background:The posteromedial cortex (PMC) is a collective term for an anatomically heterogeneous area of the brain constituting a core node of the human default mode network (DMN), which is engaged during internally focused subjective cognition such as autobiographical memory.Methods:We explored the effects of causal perturbations of PMC with direct electric brain stimulation (EBS) during presurgical epilepsy monitoring with intracranial EEG electrodes.Results:Data were collected from 885 stimulations in 25 patients implanted with intracranial electrodes across the PMC. While EBS of regions immediately dorsal or ventral to the PMC reliably produced somatomotor or visual effects, respectively, we found no observable behavioral or subjectively reported effects when sites within the boundaries of PMC were electrically perturbed. In each patient, null effects of PMC stimulation were observed for sites in which intracranial recordings had clearly demonstrated electrophysiologic responses during autobiographical recall.Conclusions:Direct electric modulation of the human PMC produced null effects when standard functional mapping methods were used. More sophisticated stimulation paradigms (e.g., EBS during experimental cognitive tests) will be required for testing the causal contribution of PMC to human cognition and subjective experience. Nonetheless, our findings suggest that some extant theories of PMC and DMN contribution to human awareness and subjective conscious states require cautious re-examination.


2015 ◽  
Vol 28 (3-4) ◽  
pp. 285-296 ◽  
Author(s):  
Dietrich Samuel Schwarzkopf

Despite advances in our understanding of how the brain represents visual space, it remains unresolved how the subjective experience of an object’s size arises. While responses in retinotopic cortex correlate with perceived size, this does not imply that those brain regions mediate perceived size differences. Here I describe how the percept of an object’s size could be generated in the brain and outline unanswered questions that future research should seek to address.


Author(s):  
Maud Haffar ◽  
Hugo Pantecouteau ◽  
Sheila Bouten ◽  
Jacques Bruno Debruille

We take what we see, hear, smell and feel for the reality. However, as neuroscientists, we know that this reality, that is, our perceptual world, is in fact made up by the brain from the processing of the nerve impulses coming from receptors. Ancient Greeks used to think that this perceptual world, sometimes called our 3D movie (Chalmers), is emitted and has its own physical nature. Given how real the 3D movie looks to us, it is still difficult today to consider that all we would be dealing with would be patterns of brain activity The present study thus aimed at testing whether the perceptual world could have some physical existence in addition to that of the neural patterns responsible for it. To achieve that goal, we tried to see whether brains could be sensitive to the 3D movie of others. This, admittedly unusual, operational hypothesis was based on two assumptions. First, brains are sensitive to the 3D movie, as our experience includes reactions to our perceptual world. Second, the physicality at stake does not differ across individuals. We recorded the event-related brain potentials (ERPs) evoked by stimuli of the international affective picture system in pairs of closely-related participants. Most importantly, they could neither see the stimuli simultaneously presented to their partners nor their reactions to them. As in Bouten et al. (2015), around 400 ms after the onset of the stimuli, ERPs started being more positive in inconsistent conditions. Namely, when the two subjects of each pair were presented with the same stimulus whereas they were told it would be a different one and vice-versa (i.e., different-stimuli expected to be same). ERPs were less positive when the two subjects of a pair were presented with the same stimuli and were told they were the same and conversely (i.e., different-stimuli expected to be different). The same experiment was then run in pairs of strangers. No significant effect of consistency on ERPs was observed even though participants could, this time, see, in the very periphery of their visual field, the reactions of their partner to the stimuli. We thus use the results of both studies to support a new version of the emission theory of consciousness and to suggest that the sensitivity to the perceptual world of others may depend on their prior familiarity with it.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peter W. Halligan ◽  
David A. Oakley

Consciousness as used here, refers to the private, subjective experience of being aware of our perceptions, thoughts, feelings, actions, memories (psychological contents) including the intimate experience of a unified self with the capacity to generate and control actions and psychological contents. This compelling, intuitive consciousness-centric account has, and continues to shape folk and scientific accounts of psychology and human behavior. Over the last 30 years, research from the cognitive neurosciences has challenged this intuitive social construct account when providing a neurocognitive architecture for a human psychology. Growing evidence suggests that the executive functions typically attributed to the experience of consciousness are carried out competently, backstage and outside subjective awareness by a myriad of fast, efficient non-conscious brain systems. While it remains unclear how and where the experience of consciousness is generated in the brain, we suggested that the traditional intuitive explanation that consciousness is causally efficacious is wrong-headed when providing a cognitive neuroscientific account of human psychology. Notwithstanding the compelling 1st-person experience (inside view) that convinces us that subjective awareness is the mental curator of our actions and thoughts, we argue that the best framework for building a scientific account is to be consistent with the biophysical causal dependency of prior neural processes. From a 3rd person perspective, (outside view), we propose that subjective awareness lacking causal influence, is (no more) than our experience of being aware, our awareness of our psychological content, knowing that we are aware, and the belief that that such experiences are evidence of an agentive capacity shared by others. While the human mind can be described as comprising both conscious and nonconscious aspects, both ultimately depend on neural process in the brain. In arguing for the counter-intuitive epiphenomenal perspective, we suggest that a scientific approach considers all mental aspects of mind including consciousness in terms of their underlying, preceding (causal) biological changes, in the realization that most brain processes are not accompanied by any discernible change in subjective awareness.


Sign in / Sign up

Export Citation Format

Share Document