Where Is Size in the Brain of the Beholder?

2015 ◽  
Vol 28 (3-4) ◽  
pp. 285-296 ◽  
Author(s):  
Dietrich Samuel Schwarzkopf

Despite advances in our understanding of how the brain represents visual space, it remains unresolved how the subjective experience of an object’s size arises. While responses in retinotopic cortex correlate with perceived size, this does not imply that those brain regions mediate perceived size differences. Here I describe how the percept of an object’s size could be generated in the brain and outline unanswered questions that future research should seek to address.

2007 ◽  
Vol 33 (2-3) ◽  
pp. 433-456 ◽  
Author(s):  
Adam J. Kolber

A neurologist with abdominal pain goes to see a gastroenterologist for treatment. The gastroenterologist asks the neurologist where it hurts. The neurologist replies, “In my head, of course.” Indeed, while we can feel pain throughout much of our bodies, pain signals undergo most of their processing in the brain. Using neuroimaging techniques like functional magnetic resonance imaging (“fMRI”) and positron emission tomography (“PET”), researchers have more precisely identified brain regions that enable us to experience physical pain. Certain regions of the brain's cortex, for example, increase in activation when subjects are exposed to painful stimuli. Furthermore, the amount of activation increases with the intensity of the painful stimulus. These findings suggest that we may be able to gain insight into the amount of pain a particular person is experiencing by non-invasively imaging his brain.Such insight could be particularly valuable in the courtroom where we often have no definitive medical evidence to prove or disprove claims about the existence and extent of pain symptoms.


Author(s):  
Shlomit Ritz Finkelstein

This chapter explores and summarizes the current knowledge about the neurophysiological substrata of the utterance of expletives—its brain regions, pathways, and neurotransmitters, and its interaction with hormones. The chapter presents clinical data that have been gathered directly from patients of aphasia, Tourette syndrome, Alzheimer’s disease, and brain injuries—all are disorders often accompanied with expletives. It also discusses the possible relations between swearing and aggression, swearing and pain, and swearing and social inhibition in the population at large. Finally, the chapter examines the clinical data and the data gathered from the population at large within one frame, and proposes two hypotheses that can serve as possible directions for future research about the biological substrata of swearing. No previous knowledge of the brain is assumed.


CNS Spectrums ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 79-100 ◽  
Author(s):  
Joaquim C. Reis ◽  
Michael H. Antoni ◽  
Luzia Travado

Despite emerging evidence that distress and adversity can contribute to negative health outcomes in cancer, little is known about the brain networks, regions, or circuits that can contribute to individual differences in affect/distress states and health outcomes in treated cancer patients. To understand the state-of-the-science in this regard, we reviewed neuroimaging studies with cancer patients that examined the associations between negative affect (distress) and changes in the metabolism or structure of brain regions. Cancer patients showed changes in function and/or structure of key brain regions such as the prefrontal cortex, thalamus, amygdala, hippocampus, cingulate cortex (mainly subgenual area), hypothalamus, basal ganglia (striatum and caudate), and insula, which are associated with greater anxiety, depression, posttraumatic stress disorder (PTSD) symptoms, and distress. These results provide insights for understanding the effects of these psychological and emotional factors on peripheral stress-related biobehavioral pathways known to contribute to cancer progression and long-term health outcomes. This line of work provides leads for understanding the brain-mediated mechanisms that may explain the health effects of psychosocial interventions in cancer patients and survivors. A multilevel and integrated model for distress management intervention effects on psychological adaptation, biobehavioral processes, cancer pathogenesis, and clinical outcomes is proposed for future research.


2020 ◽  
Author(s):  
Adrien Folville ◽  
Jon Simons ◽  
Arnaud D'Argembeau ◽  
Christine Bastin

It has been frequently described that older adults subjectively report the vividness of their memories as being as high, or even higher, than young adults, despite poorer objective memory performance and/or lower activity in the associated brain regions. Here, we review studies that examined age-related changes in the cognitive and neural basis of the subjective experience of remembering. Together, these studies reveal that older adults assign subjective memory ratings that are as high or higher than young adults but rely on retrieved memory details to a lesser extent. We discuss potential mechanisms underlying this observation. Overestimation of subjective ratings may stem from metamemory changes, psycho-social factors or methodological issues. As for poorer calibration of the ratings, this may be explained by the fact that older adults rely on/weight other types of information (conceptual knowledge, personal memories, and socioemotional or gist aspects of the memory trace) to a greater extent than young adults when judging the subjective vividness of their memories. We further highlight that a desirable avenue for future research would be to investigate how subjective ratings follow the richness of the corresponding mental representations in other cognitive operations than episodic memory and in other populations than healthy older adults. Finally, we recommend that future studies explore the bases of the subjective sense of remembering across the lifespan while considering recent accounts focusing both on individual and collective/shared aspects of recollection.


2020 ◽  
Vol 14 ◽  
Author(s):  
Richard Huskey ◽  
Benjamin O. Turner ◽  
René Weber

Prevention neuroscience investigates the brain basis of attitude and behavior change. Over the years, an increasingly structurally and functionally resolved “persuasion network” has emerged. However, current studies have only identified a small handful of neural structures that are commonly recruited during persuasive message processing, and the extent to which these (and other) structures are sensitive to numerous individual difference factors remains largely unknown. In this project we apply a multi-dimensional similarity-based individual differences analysis to explore which individual factors—including characteristics of messages and target audiences—drive patterns of brain activity to be more or less similar across individuals encountering the same anti-drug public service announcements (PSAs). We demonstrate that several ensembles of brain regions show response patterns that are driven by a variety of unique factors. These results are discussed in terms of their implications for neural models of persuasion, prevention neuroscience and message tailoring, and methodological implications for future research.


2019 ◽  
Vol 8 (2) ◽  
pp. IJH17 ◽  
Author(s):  
Hilary A Marusak ◽  
Felicity W Harper ◽  
Jeffrey W Taub ◽  
Christine A Rabinak

This review examines the neurobiological effects of pediatric cancer-related posttraumatic stress symptoms (PTSS). We first consider studies on prevalence and predictors of childhood cancer-related PTSS and compare these studies to those in typically developing (i.e., noncancer) populations. Then, we briefly introduce the brain regions implicated in PTSS and review neuroimaging studies examining the neural correlates of PTSS in noncancer populations. Next, we present a framework and recommendations for future research. In particular, concurrent evaluation of PTSS and neuroimaging, as well as sociodemographic, medical, family factors, and other life events, are needed to uncover mechanisms leading to cancer-related PTSS. We review findings from neuroimaging studies on childhood cancer and one recent study on cancer-related PTSS as a starting point in this line of research.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
N. Apurva Ratan Murty ◽  
Pouya Bashivan ◽  
Alex Abate ◽  
James J. DiCarlo ◽  
Nancy Kanwisher

AbstractCortical regions apparently selective to faces, places, and bodies have provided important evidence for domain-specific theories of human cognition, development, and evolution. But claims of category selectivity are not quantitatively precise and remain vulnerable to empirical refutation. Here we develop artificial neural network-based encoding models that accurately predict the response to novel images in the fusiform face area, parahippocampal place area, and extrastriate body area, outperforming descriptive models and experts. We use these models to subject claims of category selectivity to strong tests, by screening for and synthesizing images predicted to produce high responses. We find that these high-response-predicted images are all unambiguous members of the hypothesized preferred category for each region. These results provide accurate, image-computable encoding models of each category-selective region, strengthen evidence for domain specificity in the brain, and point the way for future research characterizing the functional organization of the brain with unprecedented computational precision.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alexander Maÿe ◽  
Tiezhi Wang ◽  
Andreas K. Engel

Hyper-brain studies analyze the brain activity of two or more individuals during some form of interaction. Several studies found signs of inter-subject brain activity coordination, such as power and phase synchronization or information flow. This hyper-brain coordination is frequently studied in paradigms which induce rhythms or even synchronization, e.g., by mirroring movements, turn-based activity in card or economic games, or joint music making. It is therefore interesting to figure out in how far coordinated brain activity may be induced by a rhythmicity in the task and/or the sensory feedback that the partners receive. We therefore studied the EEG brain activity of dyads in a task that required the smooth pursuit of a target and did not involve any extrinsic rhythms. Partners controlled orthogonal axes of the two-dimensional motion of an object that had to be kept on the target. Using several methods for analyzing hyper-brain coupling, we could not detect signs of coordinated brain activity. However, we found several brain regions in which the frequency-specific activity significantly correlated with the objective task performance, the subjective experience thereof, and of the collaboration. Activity in these regions has been linked to motor control, sensorimotor integration, executive control and emotional processing. Our results suggest that neural correlates of intersubjectivity encompass large parts of brain areas that are considered to be involved in sensorimotor control without necessarily coordinating their activity across agents.


NeuroSci ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 224-234
Author(s):  
Fredric Schiffer

In this paper I will address questions about will, agency, choice, consciousness, relevant brain regions, impacts of disorders, and their therapeutics, and I will do this by referring to my theory, Dual-brain Psychology, which posits that within most of us there exist two mental agencies with different experiences, wills, choices, and behaviors. Each of these agencies is associated as a trait with one brain hemisphere (either left or right) and its composite regions. One of these agencies is more adversely affected by past traumas, and is more immature and more symptomatic, while the other is more mature and healthier. The theory has extensive experimental support through 17 peer-reviewed publications with clinical and non-clinical research. I will discuss how this theory relates to the questions about the nature of agency and I will also discuss my published theory on the physical nature of subjective experience and its relation to the brain, and how that theory interacts with Dual-Brain Psychology, leading to further insights into our human nature and its betterment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joseph Bryant ◽  
Sanketh Andhavarapu ◽  
Christopher Bever ◽  
Poornachander Guda ◽  
Akhil Katuri ◽  
...  

AbstractThe combined antiretroviral therapy era has significantly increased the lifespan of people with HIV (PWH), turning a fatal disease to a chronic one. However, this lower but persistent level of HIV infection increases the susceptibility of HIV-associated neurocognitive disorder (HAND). Therefore, research is currently seeking improved treatment for this complication of HIV. In PWH, low levels of brain derived neurotrophic factor (BDNF) has been associated with worse neurocognitive impairment. Hence, BDNF administration has been gaining relevance as a possible adjunct therapy for HAND. However, systemic administration of BDNF is impractical because of poor pharmacological profile. Therefore, we investigated the neuroprotective effects of BDNF-mimicking 7,8 dihydroxyflavone (DHF), a bioactive high-affinity TrkB agonist, in the memory-involved hippocampus and brain cortex of Tg26 mice, a murine model for HAND. In these brain regions, we observed astrogliosis, increased expression of chemokine HIV-1 coreceptors CXCR4 and CCR5, neuroinflammation, and mitochondrial damage. Hippocampi and cortices of DHF treated mice exhibited a reversal of these pathological changes, suggesting the therapeutic potential of DHF in HAND. Moreover, our data indicates that DHF increases the phosphorylation of TrkB, providing new insights about the role of the TrkB–Akt–NFkB signaling pathway in mediating these pathological hallmarks. These findings guide future research as DHF shows promise as a TrkB agonist treatment for HAND patients in adjunction to the current antiviral therapies.


Sign in / Sign up

Export Citation Format

Share Document