On the salt rejection properties of nanofiltration polyamide membranes formed by interfacial polymerization

2011 ◽  
Vol 379 (1-2) ◽  
pp. 215-223 ◽  
Author(s):  
Haochen Zhu ◽  
Anthony Szymczyk ◽  
Béatrice Balannec
2020 ◽  
Vol 117 (48) ◽  
pp. 30191-30200
Author(s):  
Cody L. Ritt ◽  
Jay R. Werber ◽  
Mengyi Wang ◽  
Zhongyue Yang ◽  
Yumeng Zhao ◽  
...  

Escalating global water scarcity necessitates high-performance desalination membranes, for which fundamental understanding of structure–property–performance relationships is required. In this study, we comprehensively assess the ionization behavior of nanoporous polyamide selective layers in state-of-the-art nanofiltration (NF) membranes. In these films, residual carboxylic acids and amines influence permeability and selectivity by imparting hydrophilicity and ionizable moieties that can exclude coions. We utilize layered interfacial polymerization to prepare physically and chemically similar selective layers of controlled thickness. We then demonstrate location-dependent ionization of carboxyl groups in NF polyamide films. Specifically, only surface carboxyl groups ionize under neutral pH, whereas interior carboxyl ionization requires pH >9. Conversely, amine ionization behaves invariably across the film. First-principles simulations reveal that the low permittivity of nanoconfined water drives the anomalous carboxyl ionization behavior. Furthermore, we report that interior carboxyl ionization could improve the water–salt permselectivity of NF membranes over fourfold, suggesting that interior charge density could be an important tool to enhance the selectivity of polyamide membranes. Our findings highlight the influence of nanoconfinement on membrane transport properties and provide enhanced fundamental understanding of ionization that could enable novel membrane design.


Desalination ◽  
2018 ◽  
Vol 436 ◽  
pp. 1-7 ◽  
Author(s):  
Zhikan Yao ◽  
Hao Guo ◽  
Zhe Yang ◽  
Chuner Lin ◽  
Baoku Zhu ◽  
...  

Membranes ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 163 ◽  
Author(s):  
Zongyao Zhou ◽  
Xiang Li ◽  
Digambar B. Shinde ◽  
Guan Sheng ◽  
Dongwei Lu ◽  
...  

Enhancing the water flux while maintaining the high salt rejection of existing reverse osmosis membranes remains a considerable challenge. Herein, we report the use of a porous carbon nitride (C3N4) nanoparticle to potentially improve both the water flux and salt rejection of the state-of-the-art polyamide (PA) thin film composite (TFC) membranes. The organic–organic covalent bonds endowed C3N4 with great compatibility with the PA layer, which positively influenced the customization of interfacial polymerization (IP). Benefitting from the positive effects of C3N4, a more hydrophilic, more crumpled thin film nanocomposite (TFN) membrane with a larger surface area, and an increased cross-linking degree of PA layer was achieved. Moreover, the uniform porous structure of the C3N4 embedded in the ”ridge” sections of the PA layer potentially provided additional water channels. All these factors combined provided unprecedented performance for seawater desalination among all the PA-TFC membranes reported thus far. The water permeance of the optimized TFN membrane is 2.1-folds higher than that of the pristine PA-TFC membrane, while the NaCl rejection increased to 99.5% from 98.0%. Our method provided a promising way to improve the performance of the state-of-art PA-TFC membranes in seawater desalination.


2016 ◽  
Vol 74 (7) ◽  
pp. 1619-1625 ◽  
Author(s):  
Fengjing Wu ◽  
Xiaojuan Liu ◽  
Chaktong Au

The polyamide reverse osmosis (RO) membranes were prepared through interfacial polymerization of m-phenylenediamine (MPD) and trimesoyl chloride (TMC). The use of dimethyl sulfoxide (DMSO) and glycerol as additives for the formation of thin-film composite (TFC) was investigated. We studied the effect of DMSO and glycerol addition on membrane property and RO performance. Microscopic morphology was examined by atomic force microscopy and scanning electron microscopy. The surface hydrophilicity was characterized on the basis of water contact angle and surface solid–liquid interfacial free energy (−ΔGSL). Water flux and salt rejection ability of the membranes prepared with or without the additives were evaluated by cross-flow RO tests. The results reveal that the addition of DMSO and glycerol strongly influences the property of the TFC RO membrane. Compared to the MPD/TMC membrane fabricated without DMSO and glycerol, the MPD/TMC/DMSO/glycerol membrane has a rougher surface and is more hydrophilic, showing smaller water contact angle and larger −ΔGSL value. Without decrease in salt rejection ability, the MPD/TMC/DMSO/glycerol membrane shows water flux significantly larger than that of the MPD/TMC membrane. The unique property of the MPD/TMC/DMSO/glycerol membrane is attributed to the cooperative effect of DMSO and glycerol on membrane structure during the interfacial polymerization process.


2016 ◽  
Vol 78 (12) ◽  
Author(s):  
C. Y. Chong ◽  
G. S. Lai ◽  
W. J. Lau ◽  
N. Yusof ◽  
P. S. Goh ◽  
...  

The membrane technology is still considered a costly method to produce potable water. In view of this, RO membrane with enhanced water permeability without trade-off in salt rejection is desirable as it could further reduce the cost for water desalination. In this study, thin film nanocomposite (TFN) membranes containing 0.05 or 0.10 w/v% hydrophilic nanofillers in polyamide layer were synthesized via interfacial polymerization of piperazine and trimesoyl chloride monomers. The resultant TFN membranes were characterized and compared with a control thin film composite (TFC) membrane. Results from the filtration experiments showed that TFN membranes exhibited higher water permeability, salt rejection and fouling resistance compared to that of the TFC membrane. Excessive amount of nanofillers incorporated in the membrane PA layer however negatively affected the cross-linking in the polymer matrix, thus deteriorating the membrane salt rejection. TFN membrane containing 0.05 w/v% of nanofillers showed better performances than the TFC membrane, recording a pure water flux of 11.2 L/m2∙h, and salt rejection of 95.4%, 97.3% and 97.5% against NaCl, Na2SO4 and MgSO4, respectively. 


2021 ◽  
pp. 119536
Author(s):  
Xuewu Zhu ◽  
Xinyu Zhang ◽  
Jinyu Li ◽  
Xinsheng Luo ◽  
Daliang Xu ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (86) ◽  
pp. 54898-54910 ◽  
Author(s):  
Quanling Xie ◽  
Wenyao Shao ◽  
Shishen Zhang ◽  
Zhuan Hong ◽  
Qiuquan Wang ◽  
...  

In this work, novel thin-film nanocompostie NF membranes were developed through modification with maleic anhydride functionalized graphene oxideviainterfacial polymerization, which showed the enhanced water flux with retaining high salt rejection.


RSC Advances ◽  
2015 ◽  
Vol 5 (68) ◽  
pp. 54985-54997 ◽  
Author(s):  
B. Khorshidi ◽  
T. Thundat ◽  
B. A. Fleck ◽  
M. Sadrzadeh

Analysis of strong interaction between monomers concentrations in interfacial polymerization reaction provides valuable guidelines for making a wide range of salt rejecting membranes.


Sign in / Sign up

Export Citation Format

Share Document