scholarly journals DEM simulations of initial deposition of colloidal particles around non-woven membrane spacers

2013 ◽  
Vol 442 ◽  
pp. 254-263 ◽  
Author(s):  
Florian Chaumeil ◽  
Martin Crapper
2014 ◽  
Vol 564 ◽  
pp. 222-227
Author(s):  
Masuri Siti Ujila ◽  
Mathieu Sellier

In particle deposition problems, colloidal potentials play an important role in adsorpting the colloidal particles onto the surface of the deposit wall once the colloids arrive in the vicinity of the wall. Therefore it is important to gain understanding of these potentials, in particular, how they are influenced by the problem parameters. With such an understanding, more insights into mitigating the problem can be obtained, and consequently, more effective approaches to tackle the problem can be taken. In this work, we present the effects of particle size, flow temperature and ionic strength of the solution on the colloidal potentials based on numerical analysis. The results support the conclusion that the rate of initial deposition of particles can be reduced if the particle size is smaller, the flow temperature is increased, and the ionic strength is reduced.


Author(s):  
George G. Cocks ◽  
Louis Leibovitz ◽  
DoSuk D. Lee

Our understanding of the structure and the formation of inorganic minerals in the bivalve shells has been considerably advanced by the use of electron microscope. However, very little is known about the ultrastructure of valves in the larval stage of the oysters. The present study examines the developmental changes which occur between the time of conception to the early stages of Dissoconch in the Crassostrea virginica(Gmelin), focusing on the initial deposition of inorganic crystals by the oysters.The spawning was induced by elevating the temperature of the seawater where the adult oysters were conditioned. The eggs and sperm were collected separately, then immediately mixed for the fertilizations to occur. Fertilized animals were kept in the incubator where various stages of development were stopped and observed. The detailed analysis of the early stages of growth showed that CaCO3 crystals(aragonite), with orthorhombic crystal structure, are deposited as early as gastrula stage(Figuresla-b). The next stage in development, the prodissoconch, revealed that the crystal orientation is in the form of spherulites.


Author(s):  
L. V. Leak ◽  
J. F. Burke

The vital role played by the lymphatic capillaries in the transfer of tissue fluids and particulate materials from the connective tissue area can be demonstrated by the rapid removal of injected vital dyes into the tissue areas. In order to ascertain the mechanisms involved in the transfer of substances from the connective tissue area at the ultrastructural level, we have injected colloidal particles of varying sizes which range from 80 A up to 900-mμ. These colloidal particles (colloidal ferritin 80-100A, thorium dioxide 100-200 A, biological carbon 200-300 and latex spheres 900-mμ) are injected directly into the interstitial spaces of the connective tissue with glass micro-needles mounted in a modified Chambers micromanipulator. The progress of the particles from the interstitial space into the lymphatic capillary lumen is followed by observing tissues from animals (skin of the guinea pig ear) that were injected at various time intervals ranging from 5 minutes up to 6 months.


Author(s):  
Michio Ashida ◽  
Yasukiyo Ueda

An anodic oxide film is formed on aluminum in an acidic elecrolyte during anodizing. The structure of the oxide film was observed directly by carbon replica method(l) and ultra-thin sectioning method(2). The oxide film consists of barrier layer and porous layer constructed with fine hexagonal cellular structure. The diameter of micro pores and the thickness of barrier layer depend on the applying voltage and electrolyte. Because the dimension of the pore corresponds to that of colloidal particles, many metals deposit in the pores. When the oxide film is treated as anode in emulsion of polyelectrolyte, the emulsion particles migrate onto the film and deposit on it. We investigated the behavior of the emulsion particles during electrodeposition.Aluminum foils (99.3%) were anodized in either 0.25M oxalic acid solution at 30°C or 3M sulfuric acid solution at 20°C. After washing with distilled water, the oxide films used as anode were coated with emulsion particles by applying voltage of 200V and then they were cured at 190°C for 30 minutes.


1976 ◽  
Vol 37 (C6) ◽  
pp. C6-273-C6-276
Author(s):  
H. J. ÜBELHACK ◽  
F. H. WITTMANN

TAPPI Journal ◽  
2016 ◽  
Vol 15 (5) ◽  
pp. 331-335 ◽  
Author(s):  
LEBO XU ◽  
JEREMY MYERS ◽  
PETER HART

Retention of cationic dispersed rosin size was studied via turbidity measurements on stock filtrate with different alum and dispersed rosin size dosages. Stock charge characteristics were analyzed using both an analysis of charge demand determined via a streaming current detector and an evaluation of zeta potential of the fibers by streaming potential measurement. The results indicated that an optimum amount of alum existed such that good sizing retention was maintained throughout a wide range of dispersed rosin size dosages. However, when an excessive amount of alum was used and fines and colloidal particles were transitioned from anionic to cationic, the cationic size retention was reduced. Laboratory results were confirmed with a paper machine trial. All data suggested that a stock charge study was necessary to identify optimal alum dosage for a cationic dispersed rosin sizing program.


Author(s):  
S. Pragati ◽  
S. Kuldeep ◽  
S. Ashok ◽  
M. Satheesh

One of the situations in the treatment of disease is the delivery of efficacious medication of appropriate concentration to the site of action in a controlled and continual manner. Nanoparticle represents an important particulate carrier system, developed accordingly. Nanoparticles are solid colloidal particles ranging in size from 1 to 1000 nm and composed of macromolecular material. Nanoparticles could be polymeric or lipidic (SLNs). Industry estimates suggest that approximately 40% of lipophilic drug candidates fail due to solubility and formulation stability issues, prompting significant research activity in advanced lipophile delivery technologies. Solid lipid nanoparticle technology represents a promising new approach to lipophile drug delivery. Solid lipid nanoparticles (SLNs) are important advancement in this area. The bioacceptable and biodegradable nature of SLNs makes them less toxic as compared to polymeric nanoparticles. Supplemented with small size which prolongs the circulation time in blood, feasible scale up for large scale production and absence of burst effect makes them interesting candidates for study. In this present review this new approach is discussed in terms of their preparation, advantages, characterization and special features.


2004 ◽  
Vol 3 (1) ◽  
pp. 247 ◽  
Author(s):  
M. Rousseau ◽  
L. Di Pietro ◽  
R. Angulo-Jaramillo ◽  
D. Tessier ◽  
B. Cabibel

Sign in / Sign up

Export Citation Format

Share Document