scholarly journals Multi-scale membrane process optimization with high-fidelity ion transport models through machine learning

2020 ◽  
Vol 608 ◽  
pp. 118208 ◽  
Author(s):  
Deniz Rall ◽  
Artur M. Schweidtmann ◽  
Maximilian Kruse ◽  
Elizaveta Evdochenko ◽  
Alexander Mitsos ◽  
...  
2020 ◽  
Author(s):  
Matthias Wessling

Innovative membrane technologies optimally integrated into large separation process plants are essential for economical water treatment and disposal. However, the mass transport through membranes is commonly described by nonlinear differential-algebraic mechanistic models at the nano-scale, while the process and its economics range up to large-scale. Thus, the optimal design of membranes in process plants requires decision making across multiple scales, which is not tractable using standard tools. In this work, we embed artificial neural networks (ANNs) as surrogate models in the deterministic global optimization to bridge the gap of scales. This methodology allows for deterministic global optimization of membrane processes with accurate transport models – avoiding the utilization of inaccurate approximations through heuristics or short-cut models. The ANNs are trained based on data generated by a one-dimensional extended Nernst-Planck ion transport model and extended to a more accurate two-dimensional distribution of the membrane module, that captures the filtration-related decreasing retention of salt. We simultaneously design the membrane and plant layout yielding optimal membrane module synthesis properties along with the optimal plant design for multiple objectives, feed concentrations, filtration stages, and salt mixtures. The developed process models and the optimization solver are available open-source, enabling computational resource-efficient multi-scale optimization in membrane science.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1241
Author(s):  
Ming-Hsi Lee ◽  
Yenming J. Chen

This paper proposes to apply a Markov chain random field conditioning method with a hybrid machine learning method to provide long-range precipitation predictions under increasingly extreme weather conditions. Existing precipitation models are limited in time-span, and long-range simulations cannot predict rainfall distribution for a specific year. This paper proposes a hybrid (ensemble) learning method to perform forecasting on a multi-scaled, conditioned functional time series over a sparse l1 space. Therefore, on the basis of this method, a long-range prediction algorithm is developed for applications, such as agriculture or construction works. Our findings show that the conditioning method and multi-scale decomposition in the parse space l1 are proved useful in resisting statistical variation due to increasingly extreme weather conditions. Because the predictions are year-specific, we verify our prediction accuracy for the year we are interested in, but not for other years.


2021 ◽  
Vol 248 ◽  
pp. 118022
Author(s):  
Min Xu ◽  
Jianbing Jin ◽  
Guoqiang Wang ◽  
Arjo Segers ◽  
Tuo Deng ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e13588-e13588
Author(s):  
Laura Sachse ◽  
Smriti Dasari ◽  
Marc Ackermann ◽  
Emily Patnaude ◽  
Stephanie OLeary ◽  
...  

e13588 Background: Pre-screening for clinical trials is becoming more challenging as inclusion/exclusion criteria becomes increasingly complex. Oncology precision medicine provides an exciting opportunity to simplify this process and quickly match patients with trials by leveraging machine learning technology. The Tempus TIME Trial site network matches patients to relevant, open, and recruiting clinical trials, personalized to each patient’s clinical and molecular biology. Methods: Tempus screens patients at sites within the TIME Trial Network to find high-fidelity matches to clinical trials. The patient records include documentation submitted alongside NGS orders as well as electronic medical records (EMR) ingested through EMR Integrations. While Tempus-sequenced patients were automatically matched to trials using a Tempus-built matching application, EMR records were run through a natural language processing (NLP) data abstraction model to identify patients with an actionable gene of interest. Structured data were analyzed to filter to patients that lack a deceased date and have an encounter date within a predefined time period. Tempus abstractors manually validated the resulting unstructured records to ensure each patient was matched to a TIME Trial at a site capable of running the trial. For all high-level patient matches, a Tempus Clinical Navigator manually evaluated other clinical criteria to confirm trial matches and communicated with the site about trial options. Results: Patient matching was accelerated by implementing NLP gene and report detection (which isolated 17% of records) and manual screening. As a result, Tempus facilitated screening of over 190,000 patients efficiently using proprietary NLP technology to match 332 patients to 21 unique interventional clinical trials since program launch. Tempus continues to optimize its NLP models to increase high-fidelity trial matching at scale. Conclusions: The TIME Trial Network is an evolving, dynamic program that efficiently matches patients with clinical trial sites using both EMR and Tempus sequencing data. Here, we show how machine learning technology can be utilized to efficiently identify and recruit patients to clinical trials, thereby personalizing trial enrollment for each patient.[Table: see text]


2022 ◽  
Author(s):  
Andrea Angulo ◽  
Lankun Yang ◽  
Eray S Aydil ◽  
Miguel A. Modestino

Autonomous chemical process development and optimization methods use algorithms to explore the operating parameter space based on feedback from experimentally determined exit stream compositions. Measuring the compositions of multicomponent streams...


Sign in / Sign up

Export Citation Format

Share Document