Microscopic cuticle structure comparison of pupal melanic and wild strain of Spodoptera exigua and their gene expression profiles in three time points

2018 ◽  
Vol 114 ◽  
pp. 483-493 ◽  
Author(s):  
Saad Jan ◽  
Chunyu Li ◽  
Sisi Liu ◽  
Xiangyang Liu ◽  
Fuxing Zhu ◽  
...  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Arika Fukushima ◽  
Masahiro Sugimoto ◽  
Satoru Hiwa ◽  
Tomoyuki Hiroyasu

Abstract Background Historical and updated information provided by time-course data collected during an entire treatment period proves to be more useful than information provided by single-point data. Accurate predictions made using time-course data on multiple biomarkers that indicate a patient’s response to therapy contribute positively to the decision-making process associated with designing effective treatment programs for various diseases. Therefore, the development of prediction methods incorporating time-course data on multiple markers is necessary. Results We proposed new methods that may be used for prediction and gene selection via time-course gene expression profiles. Our prediction method consolidated multiple probabilities calculated using gene expression profiles collected over a series of time points to predict therapy response. Using two data sets collected from patients with hepatitis C virus (HCV) infection and multiple sclerosis (MS), we performed numerical experiments that predicted response to therapy and evaluated their accuracies. Our methods were more accurate than conventional methods and successfully selected genes, the functions of which were associated with the pathology of HCV infection and MS. Conclusions The proposed method accurately predicted response to therapy using data at multiple time points. It showed higher accuracies at early time points compared to those of conventional methods. Furthermore, this method successfully selected genes that were directly associated with diseases.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2361-2361
Author(s):  
Hui Yu ◽  
Sheng Zhou ◽  
Geoffrey A. Neale ◽  
Brian P. Sorrentino

Abstract Abstract 2361 HOXB4 is a homeobox transcription factor that can induce hematopoietic stem cell (HSC) expansion both in vivo and in vitro. An interesting feature of HOXB4-induced HSC expansion is that HSC numbers do not exceed normal levels in vivo due to an unexplained physiological capping mechanism. To gain further insight into HOXB4 regulatory signals, we transplanted mice with bone marrow cells that had been transduced with a MSCV-HOXB4-ires-YFP vector and analyzed gene expression profiles in HSC-enriched populations 20 weeks after transplant, a time point at which HSC numbers have expanded to normal levels but no longer increasing beyond physiologic levels. We used Affymetrix arrays to analyze gene expression profiles in bone marrow cells sorted for a Lin−Sca-1+c-Kit+ (LSK), YFP+ phenotype. Using ANOVA, we identified1985 probe sets with >2 fold difference in expression (FDR<, 0.1) relative to a control vector-transduced LSK cells. A cohort of genes was identified that were known positive regulators of HSC self-renewal and proliferation. Hemgn, which we identified in a previous screen as a positive regulator of expansion and a direct transcriptional target of HOXB4, was 3.5 fold up-regulated in HOXB4 transduced LSKs. Other genes known to be important for HSCs survival, self-renewal and differentiation were upregulated to significant levels including N-myc, Meis1, Hoxa9, Hoxa10 and GATA2. Microarray data for selected genes was validated by quantitative real-time PCR on HOXB4 transduced CD34low LSK cells, a highly purified HSC population, obtained from another set of transplanted mice at the 20 week time point. In contrast, other gene expression changes were noted that would potentially limit or decrease stem cell numbers. PRDM16, a set domain transcription factor critical for HSC maintenance and associated with clonal hematopoietic expansions when inadvertently activated as a result of retroviral insertion, was dramatically down-regulated on the expression array and 7.6 fold decreased in the real time PCR assay of CD34low LSK cells. TFG-beta signaling is a well defined inhibitor HSC proliferation and utilize Smad proteins as downstream effectors. Expression of Smad1 and Smad7 were significantly upregulated on the LSK expression array and 8.1 and 3.5 fold up-regulated by qPCR in CD34low LSK cells. Another potential counter-regulatory signal was down regulation of Bcl3 mRNA, a potential anti-apoptotic effector in HSCs. We hypothesize that the HOXB4 expansion program involves activation of genes that lead to increased HSC numbers with later activation of counter-regulatory signals that limit expansion to physiologic numbers of HSCs in vivo. We are now examining how this program changes at various time points after transplantation and hypothesize the capping limits are set at relatively later time points during reconstitution. We also are studying the functional effects of these gene expression changes, and in particular, whether enforced expression of HOXB4 and PRMD16 will result in uncontrolled HSC proliferation and/or leukemia. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 50 (8) ◽  
pp. 615-627
Author(s):  
Sun Hyung Kwon ◽  
Li Li ◽  
Christi M. Terry ◽  
Yan-Ting Shiu ◽  
Philip J. Moos ◽  
...  

Arteriovenous hemodialysis graft (AVG) stenosis results in thrombosis and AVG failure, but prevention of stenosis has been unsuccessful due in large part to our limited understanding of the molecular processes involved in neointimal hyperplasia (NH) formation. AVG stenosis develops chiefly as a consequence of highly localized NH formation in the vein-graft anastomosis region. Surprisingly, the vein region just downstream of the vein-graft anastomosis (herein termed proximal vein region) is relatively resistant to NH. We hypothesized that the gene expression profiles of the NH-prone and NH-resistant regions will be different from each other after graft placement, and analysis of their genomic profiles may yield potential therapeutic targets to prevent AVG stenosis. To test this, we evaluated the vein-graft anastomosis (NH-prone) and proximal vein (NH-resistant) regions in a porcine model of AVG stenosis with a porcine microarray. Gene expression changes in these two distinct vein regions, relative to the gene expression in unoperated control veins, were examined at early (5 days) and later (14 days) time points following graft placement. Global genomic changes were much greater in the NH-prone region than in the NH-resistant region at both time points. In the NH-prone region, genes related to regulation of cell proliferation and osteo-/chondrogenic vascular remodeling were most enriched among the significantly upregulated genes, and genes related to smooth muscle phenotype were significantly downregulated. These results provide insights into the spatial and temporal genomic modulation underlying NH formation in AVG and suggest potential therapeutic strategies to prevent and/or limit AVG stenosis.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Paulina Carmona-Mora ◽  
Glen C Jickling ◽  
Xinhua Zhan ◽  
Marisa Hakoupian ◽  
Heather Hull ◽  
...  

Introduction: After ischemic stroke (IS), peripheral leukocytes infiltrate the damaged region and modulate the response to injury. We previously showed that peripheral blood cells display different gene expression profiles after IS and these transcriptional programs reflect the changes in immune processes in response to IS. Dissecting the temporal dynamics of gene expression after IS improves our understanding of the changes of molecular and cellular pathways involved in acute brain injury. Methods: We analyzed the transcriptomic profiles of 33 IS patients in isolated monocytes, neutrophils and whole blood. RNA-sequencing was performed on all the stroke samples as well as 12 controls with vascular risk factors (diabetes and/or hypertension and/or hypercholesterolemia). To identify differentially expressed genes, subjects were split into time points (TPs) from stroke onset (TP1= 0-24 h; TP2= 24-48 h; and TP3= > 48 h), and controls were assigned TP0. A linear regression model including time and the interaction of diagnosis x TP with cutoff of p<0.02 and fold-change>|1.2| was used. Time dependent changes were analyzed using artificial neural networks to identify clusters of genes that behave in a similar way across TPs. Results: Unique patterns of temporal expression were distinguished for the three sample types. These include genes not expressed in TP0 that peak only within the first 24 h, others that peak or decrease in TP2 and TP3, and more complex patterns. Genes that peak at TP1 in monocytes and neutrophils are related to cell adhesion and leukocyte differentiation/migration, respectively. Early peaks in whole blood occur in genes related to transcriptional regulation. In monocytes, interleukin pathways are enriched across all TPs, whereas there is a trend of suppression after 24 h in neutrophils. The inflammasome pathway is enriched in the earlier TPs in neutrophils, while not enriched in monocytes until over 48 hours. Conclusion: Our analyses on gene expression dynamics and cluster patterns allow identification of key genes and pathways at different time points following ischemic injury that are valuable as IS biomarkers and may be possible treatment targets.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2755-2755 ◽  
Author(s):  
Claudia D. Baldus ◽  
Michael Radmacher ◽  
Guido Marcucci ◽  
Dieter Hoelzer ◽  
Eckhard Thiel ◽  
...  

Abstract The human gene BAALC (Brain And Acute Leukemia, Cytoplasmic) is a molecular marker of hematopoietic progenitor cells and is aberrantly expressed in subsets of acute myeloid (AML) and lymphoblastic (ALL) leukemias. High mRNA expression levels of BAALC have been shown to adversely impact outcome in newly diagnosed AML patients (pts) with normal cytogenetics. To gain insight into the functional role of BAALC and its significance to normal hematopoiesis and leukemogenesis we compared gene expression profiles of normal CD34+ progenitors with those of AML and ALL blasts (using oligonucleotide microarrays; HG-U133 plus 2.0, Affymetrix, Santa Clara, CA). First we explored the regulation of BAALC expression during lineage specific maturation of in vitro differentiated human CD34+ bone marrow cells selected from healthy individuals. Microarray analyses were carried out using CD34+ cells stimulated in vitro with EPO, TPO, or G/GM-CSF to induce lineage-specific differentiation. At day 0 of culture and at three different time points during differentiation (days 4, 7, 11) cells were harvested, and if necessary purified by immunomagnetic beads and used for microarray studies. Experiments of all lineages and time points were done in triplicates. A total of 276 genes were identified showing similar changes in expression (with downregulation during differentiation) as BAALC at the three time points in all lineages with a correlation coefficient of R&gt;0.95. This set of 276 BAALC co-expressed genes was investigated in an AML expression dataset generated from 51 adult pts with newly diagnosed de novo AML and normal cytogenetics (Cancer and Leukemia Group B). After exclusion of probesets expressed in fewer than 20% of pt samples, 21 probesets representing 14 named genes 6 of which are known to be involved in AML (BAALC, CD34, CD133, SOX4, ERG, SEPT6) and 4 implicated in lymphoid development (TCF4, SH2D1A, ITM2A, ITM2C) were found to be overexpressed (a significance level of P=0.01 was used) in pts of the highest third compared to pts of the lowest third of BAALC expression values as measured by real-time RT-PCR. We next applied these same 21 BAALC co-expressed probesets to an ALL expression dataset generated from 66 adult pts with newly diagnosed standard risk B-lineage precursor ALL (from the German ALL GMALL study group). A BAALC specific cluster uncovered 7 probesets representing 4 different co-expressed genes: BAALC, CD133, and the transcription factors ERG and TCF4. Thus, applying a BAALC specific expression signature to AML and ALL gene expression profiles revealed 3 genes (CD133, ERG, TCF4), which are highly associated with BAALC in myeloid and lymphoid blasts. Interestingly in non-malignant lymphoid and myeloid cells the oncogeneic ETS transcription factor ERG has shown specificity to immature cells, while its mechanistical role in leukemogenesis remains unknown. ERG and TCF4 may directly regulate BAALC and indicate a specific pathway implicated in leukemogenesis, while co-expression of CD133 and BAALC suggests shared stem cell characteristics. Functional studies are in progress to further explore these findings.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Shiva Marthandan ◽  
Steffen Priebe ◽  
Mario Baumgart ◽  
Marco Groth ◽  
Alessandro Cellerino ◽  
...  

Replicative senescence is of fundamental importance for the process of cellular aging, since it is a property of most of our somatic cells. Here, we elucidated this process by comparing gene expression changes, measured by RNA-seq, in fibroblasts originating from two different tissues, embryonic lung (MRC-5) and foreskin (HFF), at five different time points during their transition into senescence. Although the expression patterns of both fibroblast cell lines can be clearly distinguished, the similar differential expression of an ensemble of genes was found to correlate well with their transition into senescence, with only a minority of genes being cell line specific. Clustering-based approaches further revealed common signatures between the cell lines. Investigation of the mRNA expression levels at various time points during the lifespan of either of the fibroblasts resulted in a number of monotonically up- and downregulated genes which clearly showed a novel strong link to aging and senescence related processes which might be functional. In terms of expression profiles of differentially expressed genes with age, common genes identified here have the potential to rule the transition into senescence of embryonic lung and foreskin fibroblasts irrespective of their different cellular origin.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 87-87
Author(s):  
Christian Flotho ◽  
Elaine Coustan-Smith ◽  
Guangchun Song ◽  
Cheng Cheng ◽  
Deiqing Pei ◽  
...  

Abstract The assessment of early treatment response based on minimal residual disease (MRD) detection is a powerful prognostic indicator in childhood acute lymphoblastic leukemia (ALL). To identify genes whose expression is associated with poorer early response and to define gene expression signatures predictive of MRD findings, we correlated gene expression profiles of diagnostic bone marrow blasts in 236 children with ALL enrolled in St. Jude Total Therapy XIIIA-XV protocols with MRD results obtained at days 19 and 46 of remission induction treatment. The dataset consisted of 46 T-lineage ALL and 190 B-lineage ALL; the latter included 10 BCR-ABL, 11 E2A-PBX1, 12 MLL rearranged, 49 TEL-AML1, 46 hyperdiploid &gt;50 chromosomes (HD&gt;50) karyotype, 3 BCR-ABL plus HD&gt;50, and 59 other cases. RNA expression profiles were obtained using Affymetrix U133A gene chips; MRD was assessed by a flow cytometric assay that allows the identification of one leukemic cell among 10,000 normal bone marrow cells or greater and is applicable to approximately 95% of patients. We used a general linear model to eliminate the possible confounding influence of genetic subtypes known to be associated with treatment response. Then, we applied a t-test with the P value threshold of 0.006, determined by the profile information criterion for large-scale multiple tests. By this criterion, 279 probe sets were associated with MRD at day 19 (estimated false-discovery rate [FDR] 0.42) and 606 probe sets with MRD at day 46 (estimated FDR 0.17); 41 probe sets were associated with MRD at both time points. The expression of CASP8A2 (FLASH, CED-4), which encodes a key mediator of apoptosis and participates in glucocorticoid signaling, was significantly lower in cases with MRD at both time points. In a cluster analysis using the probe sets associated with MRD, the capacity to predict results of the MRD assay was limited. For example, only 69% of MRD-negative and 81% of MRD-positive results at day 19 were correctly classified. Similar results were obtained using the day 46 data. We also determined whether MRD status could be predicted by an unsupervised cluster analysis of all 236 cases with 17,269 probe sets (after removing transcripts not expressed in any of the samples). Although there was a strong association of cluster formation with lineage and genetic subtypes, there was no significant association with MRD status at days 19 or 46. Moreover, there was no significant association with MRD status in analyses limited to a series of 66 ‘standard-risk’ B-lineage ALL cases (excluding those with BCR-ABL, TEL-AML1, MLL, hypodiploid &lt;45 chromosomes or HD&gt;50), or to cases of each individual genetic subtype. In conclusion, leukemic cells at diagnosis express genes that are associated with MRD. Although gene expression profiles can accurately identify leukemia cell lineage and genotype, they cannot accurately predict MRD status, probably owing to the multifactorial nature of treatment response, which is influenced not only by cellular drug resistance but also by clinical and pharmacologic variables of the host.


2004 ◽  
Vol 171 (4S) ◽  
pp. 349-350
Author(s):  
Gaelle Fromont ◽  
Michel Vidaud ◽  
Alain Latil ◽  
Guy Vallancien ◽  
Pierre Validire ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document