An efficient wideband low noise amplifier (WLNA) using advanced design system based industrial micro strip antenna

2020 ◽  
Vol 79 ◽  
pp. 103302 ◽  
Author(s):  
A. Yogeshwaran ◽  
K. Umadevi
2018 ◽  
Vol 7 (2.24) ◽  
pp. 448
Author(s):  
S Manjula ◽  
M Malleshwari ◽  
M Suganthy

This paper presents a low power Low Noise Amplifier (LNA) using 0.18µm CMOS technology for ultra wide band (UWB) applications. gm boosting common gate (CG) LNA is designed to improve the noise performance.  For the reduction of on chip area, active inductor is employed at the input side of the designed LNA for input impedance matching. The proposed UWB LNA is designed using Advanced Design System (ADS) at UWB frequency of 3.1-10.6 GHz. Simulation results show that the gain of 10.74+ 0.01 dB, noise figure is 4.855 dB, input return loss <-13 dB and 12.5 mW power consumption.  


2012 ◽  
Vol 605-607 ◽  
pp. 2057-2061
Author(s):  
Xin Yin ◽  
Yi Yao ◽  
Jin Ling Jia

This paper studies a low noise amplifier design method for 5.8G wireless local area network. Using the software of designing RF circuit ADS(Advanced Design System) and Avago Technologies’s ATF-36077,we designed a three-cascade LNA. In 5.725G~5.85GHz range, noise figure less than 0.5dB, more than 30dB gain, input and output standing wave ratio less than 1.3dB.The LNA meet the design requirements.


2021 ◽  
Vol 18 (4) ◽  
pp. 1327-1330
Author(s):  
S. Manjula ◽  
R. Karthikeyan ◽  
S. Karthick ◽  
N. Logesh ◽  
M. Logeshkumar

An optimized high gain low power low noise amplifier (LNA) is presented using 90 nm CMOS process at 2.4 GHz frequency for Zigbee applications. For achieving desired design specifications, the LNA is optimized by particle swarm optimization (PSO). The PSO is successfully implemented for optimizing noise figure (NF) when satisfying all the design specifications such as gain, power dissipation, linearity and stability. PSO algorithm is developed in MATLAB to optimize the LNA parameters. The LNA with optimized parameters is simulated using Advanced Design System (ADS) Simulator. The LNA with optimized parameters produces 21.470 dB of voltage gain, 1.031 dB of noise figure at 1.02 mW power consumption with 1.2 V supply voltage. The comparison of designed LNA with and without PSO proves that the optimization improves the LNA results while satisfying all the design constraints.


Author(s):  
Abu Bakar Ibrahim ◽  
Nurul Husna Abdul Kahar ◽  
Hafizul Fahri Hanafi ◽  
Ashardi Abas ◽  
Shamsul Arrieya Ariffin

The paper aims to develop a new cascode low noise amplifier (LNA) by using double feedback technique architecture for wireless communication especially for long term evolution (LTE). The objective of this article is to display the improved performance of gain by minimizing noise figures with innovative techniques for the realization of Long Term Evolution (LTE). The innovation technique with implementation double feedback technique architecture outlines the possibility to improve the performance in various parameters such as bandwidth, stability, gain, noise figure, power consumption and complexity. The realization using cascode LNA is verified by using FHX76LP Super Low Noise HEMT that operate at 5.8 GHz in compliant with LTE standard. The Advance Design System (ADS) software is used to obtain characteristics for collecting data in a smith chart and s-parameter generated by simulation. The cascode LNA with the double feedback technique achieves an average gain of 20.887 dB with a noise figure of 0.341 dB. The input return loss and output return loss are – 14.354 dB and – 11.879 dB respectively. The outcome of this work will contribute to providing a better wireless signal receiver especially for the LTE standard and it potentially addressing wireless communication issues in rural areas.


Author(s):  
Teguh Firmansyah ◽  
Anggoro Suryo Pramudyo ◽  
Siswo Wardoyo ◽  
Romi Wiryadinata ◽  
Alimuddin Alimuddin

<span>A quad-band low noise amplifier (QB-LNA) based on multisection impedance transformer designed and evaluated in this research. As a novelty, a multisection impedance transformer was used to produce QB-LNA. A multisection impedance transformer is used as input and output impedance matching because it has higher stability, large Q factor, and low noise than lumpedcomponent.The QB-LNA was designed on FR4 microstrip substrate with </span><span>e</span><span>r= 4.4, thickness h=0.8 mm, and tan </span><span>d</span><span>= 0.026. The proposed QB-LNA was designed and analyzed by Advanced Design System (ADS).The simulation has shown that QB-LNA achieves gain (S<sub>21</sub>) of 22.91 dB, 16.5 dB,  11.18 dB, and 7.25 dB at 0.92 GHz, 1.84 GHz, 2.61 GHz, and 3.54 GHz, respectively.The QB-LNA obtainreturn loss (S<sub>11</sub>) of -21.28 dB, -31.87 dB,  -28.08 dB, and -30.85 dB at 0.92 GHz, 1.84 GHz, 2.61 GHz, and 3.54 GHz, respectively. It also achieves a noise figure (nf) of 2.35 dB, 2.13 dB, 2.56 dB, and 3.55 dB at 0.92 GHz, 1.84 GHz, 2.61 GHz, and 3.54 GHz, respectively. This research also has shown that the figure of merit (FoM) of the proposed QB-LNA is higher than that of another multiband LNA.</span>


SCITECH Nepal ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. 40-47
Author(s):  
Bijaya Shrestha

Low Noise Amplifier (LNA) is a front-end device of a radio frequency (RF) receiver used to increase the amplitude of an RF signal without much additional noise, thereby increasing the noise figure of the system. This paper presents design, simulation, and prototype of an LNA operating at 1.5 GHz for the bandwidth of 100 MHz. The circuit was simulated using Advanced Design System (ADS). The components used are Surface Mount Devices (SMDs); with transistor "Infineon BFP420" as a major component. Other components are resistors, capacitors, and inductors; inductors being superseded by microstrip lines. The circuit was fabricated on FR4 board. The measurements of several parameters of LNA were made using Vector Network Analyzer (VNA), Noise Figure Meter; and Spectrum Analyzer. The LNA has minimum gain of 15.4 dB and maximum noise figure of 1.33 dB. It is unconditionally stable from 50 MHz to 10 GHz. DC supply is 5V and the current consumption is 10 mA. This LNA offers Output-Third­Order-Intercept-Point (OJP3) of about 1 4 dBm.


2016 ◽  
Vol 15 (2) ◽  
pp. 45
Author(s):  
Yana Taryana ◽  
Achmad Munir ◽  
Yaya Sulaeman ◽  
Dedi

Radar merupakan sistem pemancar dan penerima gelombang elektromagnetik untuk mendeteksi, mengukur jarak dan membuat peta benda benda seperti pesawat terbang, kapal laut, kendaran bermotor dan informasi cuaca. Salah satu kendala yang dihadapi pada sistem radar adalah sinyal pantulan yang memiliki daya yang rendah sehingga kualitas penerimaan menjadi kurang baik. Untuk mengatasi kendala tersebut dibutuhkan penguat daya pada sistem penerima yaitu Low Noise Amplifier (LNA). Oleh karena itu, tulisan ini memaparkan perancangan LNA dengan menggunakan teknik Non Simultaneous Conjugate Match (NSCM) untuk aplikasi radar S-Band. Teknik ini memberikan kemudahan dalam menentukan nilai trade off (TO) untuk nilai gain, noise figure (NF) dan Voltage Standing Wave Ratio (VSWR) yang diinginkan. Dalam proses perancangannya, perangkat lunak Agilent Design System (ADS) 2011 digunakan untuk mendapatkan hubungan antara lingkaran gain, lingkaran NF, lingkaran VSWR, dan lingkaran mismatch factor (M). Dari hubungan tersebut diperoleh nilai impedansi masukan dan keluaran dari komponen aktif. Dalam tulisan ini, LNA dirancang dua tingkat untuk mendapatkan penguatan yang tinggi. Masing-masing tingkat menggunakan komponen aktif BJT BFP420 dengan penguatan dirancang sebesar 13,50 dB untuk tingkat pertama dan kedua, dan M sebesar 0,98. Sedangkan untuk saluran penyesuai impedansinya menggunakan substrat teflon fiberglass DiClad527. Hasil simulasi menunjukkan karakteristik LNA pada frekuensi 3 GHz yaitu gain sebesar 28,80 dB, NF sebesar 2,80 dB, VSWRin sebesar 1,05 dan VSWRout sebesar 1,1.


Author(s):  
Ahmed M. Abdelmonem ◽  
Ahmed S. I. Amar ◽  
Amir Almslmany ◽  
Ibrahim L. Abdalla ◽  
Fathi A. Farag

The main aim of the paper is designing and implementing a broadband low-noise-amplifier (LNA) based on compensated matching network techniquein order to get high stable gain, low noise figure, low cost and smaller sizefor 3G/4G communication system applications at 2 GHz with bandwidth 600MHz. The Advanced Design System simulates the proposed circuit (ADS).The implementation was done with a class A bias circuit and a low noise transistor BFU 730F with a lower Noise Figure (NFmin) 0.62 dB. Collectorcurrent is measured to be 5.8mA and base current is 19.1μA with a supply voltage of 2.25V. The new design proposed a (NFmin) of 0.62 dB with a 17.8dB high stable amplifier gain. The microstrip lines (MSL) and compensated matching network techniques were used to improve the LNA’s stability and achieve a good result. The LNA board is implemented and assembled on the FR4 botton layer material. The results are virtually non existence equivalent between the simulated and the measured results.


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 52
Author(s):  
Moustapha El Bakkali ◽  
Said Elkhaldi ◽  
Intissar Hamzi ◽  
Abdelhafid Marroun ◽  
Naima Amar Touhami

In this paper, a 3.1–11 GHz ultra-wideband low noise amplifier with low noise figure, high power gain S21, low reverse gain S12, and high linearity using the OMMIC ED02AH process, which employs a 0.18 μm Pseudomorphic High Electron Mobility Transistor is presented. This Low Noise Amplifier (LNA) was designed with the Advanced Design System simulator in distributed matrix architecture. For the low noise amplifier, four stages were used obtaining a good input/output matching. An average power gain S21 of 11.6 dB with a gain ripple of ±0.6 dB and excellent noise figure of 3.55 to 4.25 dB is obtained in required band with a power dissipation of 48 mW under a supply voltage of 2 V. The input compression point 1 dB and third-order input intercept point are −1.5 and 23 dBm respectively. The core layout size is 1.8 × 1.2 mm2.


Sign in / Sign up

Export Citation Format

Share Document