scholarly journals UWB-MMIC Matrix Distributed Low Noise Amplifier

Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 52
Author(s):  
Moustapha El Bakkali ◽  
Said Elkhaldi ◽  
Intissar Hamzi ◽  
Abdelhafid Marroun ◽  
Naima Amar Touhami

In this paper, a 3.1–11 GHz ultra-wideband low noise amplifier with low noise figure, high power gain S21, low reverse gain S12, and high linearity using the OMMIC ED02AH process, which employs a 0.18 μm Pseudomorphic High Electron Mobility Transistor is presented. This Low Noise Amplifier (LNA) was designed with the Advanced Design System simulator in distributed matrix architecture. For the low noise amplifier, four stages were used obtaining a good input/output matching. An average power gain S21 of 11.6 dB with a gain ripple of ±0.6 dB and excellent noise figure of 3.55 to 4.25 dB is obtained in required band with a power dissipation of 48 mW under a supply voltage of 2 V. The input compression point 1 dB and third-order input intercept point are −1.5 and 23 dBm respectively. The core layout size is 1.8 × 1.2 mm2.

2021 ◽  
Vol 18 (4) ◽  
pp. 1327-1330
Author(s):  
S. Manjula ◽  
R. Karthikeyan ◽  
S. Karthick ◽  
N. Logesh ◽  
M. Logeshkumar

An optimized high gain low power low noise amplifier (LNA) is presented using 90 nm CMOS process at 2.4 GHz frequency for Zigbee applications. For achieving desired design specifications, the LNA is optimized by particle swarm optimization (PSO). The PSO is successfully implemented for optimizing noise figure (NF) when satisfying all the design specifications such as gain, power dissipation, linearity and stability. PSO algorithm is developed in MATLAB to optimize the LNA parameters. The LNA with optimized parameters is simulated using Advanced Design System (ADS) Simulator. The LNA with optimized parameters produces 21.470 dB of voltage gain, 1.031 dB of noise figure at 1.02 mW power consumption with 1.2 V supply voltage. The comparison of designed LNA with and without PSO proves that the optimization improves the LNA results while satisfying all the design constraints.


2018 ◽  
Vol 8 (4) ◽  
pp. 42
Author(s):  
Vikram Singh ◽  
Sandeep Arya ◽  
Manoj Kumar

An ultra-wideband (UWB) low noise amplifier (LNA) for 3.3–13.0 GHz wireless applications using 90 nm CMOS is proposed in this paper. The proposed LNA uses an improved common-gate (CG) topology utilizing feedback body biasing (FBB), which improves noise figure (NF) by a considerable amount. Parallel-series tuned LC network was used between the common-gate first stage and the cascoded common-source (CS) stage to achieve the maximum signal flow from CG to CS stage. Improved CS topology with a series inductor at the drain terminal in the second stage connected and cascoded CS third stage provides high power gain (S21) and bandwidth enhancement throughout the complete UWB. A common-drain buffer stage at the output provides high output reflection coefficient (S22). It achieves an average power gain (S21) of 14.7 ± 0.5 dB with a noise figure (NF) of 3.0–3.7 dB. It has an input reflection coefficient (S11) less than −11.7 dB for 3.3–13.0 GHz frequency and output reflection coefficient (S22) of less than −10.6 dB with a very high reversion isolation (S12) of less than −72.4 dB. It consumes only 5.2 mW from a 0.7 V power supply.


Author(s):  
Ahmed M. Abdelmonem ◽  
Ahmed S. I. Amar ◽  
Amir Almslmany ◽  
Ibrahim L. Abdalla ◽  
Fathi A. Farag

The main aim of the paper is designing and implementing a broadband low-noise-amplifier (LNA) based on compensated matching network techniquein order to get high stable gain, low noise figure, low cost and smaller sizefor 3G/4G communication system applications at 2 GHz with bandwidth 600MHz. The Advanced Design System simulates the proposed circuit (ADS).The implementation was done with a class A bias circuit and a low noise transistor BFU 730F with a lower Noise Figure (NFmin) 0.62 dB. Collectorcurrent is measured to be 5.8mA and base current is 19.1μA with a supply voltage of 2.25V. The new design proposed a (NFmin) of 0.62 dB with a 17.8dB high stable amplifier gain. The microstrip lines (MSL) and compensated matching network techniques were used to improve the LNA’s stability and achieve a good result. The LNA board is implemented and assembled on the FR4 botton layer material. The results are virtually non existence equivalent between the simulated and the measured results.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hemad Heidari Jobaneh

The calculation and design of an ultralow-power Low Noise Amplifier (LNA) are proposed in this paper. The LNA operates from 5 GHz to 10 GHz, and forward body biasing technique is used to bring down power consumption of the circuit. The design revolves around precise calculations related to input impedance, output impedance, and the gain of the circuit. MATLAB and Advanced Design System (ADS) are utilized to design and simulate the LNA. In addition, TSMC 0.13 μm CMOS process is used in ADS. The LNA is biased with two different voltage supplies in order to reduce power consumption. Noise Figure (NF), input matching (S11), gain (S21), IIP3, and power dissipation are 1.46 dB–2.27 dB, −11.25 dB, 13.82 dB, −8.5, and 963 μW, respectively.


2013 ◽  
Vol 479-480 ◽  
pp. 1014-1017
Author(s):  
Yi Cheng Chang ◽  
Meng Ting Hsu ◽  
Yu Chang Hsieh

In this study, three stage ultra-wide-band CMOS low-noise amplifier (LNA) is presented. The UWB LNA is design in 0.18μm TSMC CMOS technique. The LNA input and output return loss are both less than-10dB, and achieved 10dB of average power gain, the minimum noise figure is 6.55dB, IIP3 is about-9.5dBm. It consumes 11mW from a 1.0-V supply voltage.


2018 ◽  
Vol 7 (3.6) ◽  
pp. 84
Author(s):  
N Malika Begum ◽  
W Yasmeen

This paper presents an Ultra-Wideband (UWB) 3-5 GHz Low Noise Amplifier (LNA) employing Chebyshev filter. The LNA has been designed using Cadence 0.18um CMOS technology. Proposed LNA achieves a minimum noise figure of 2.2dB, power gain of 9dB.The power consumption is 6.3mW from 1.8V power supply.  


2018 ◽  
Vol 7 (2.24) ◽  
pp. 448
Author(s):  
S Manjula ◽  
M Malleshwari ◽  
M Suganthy

This paper presents a low power Low Noise Amplifier (LNA) using 0.18µm CMOS technology for ultra wide band (UWB) applications. gm boosting common gate (CG) LNA is designed to improve the noise performance.  For the reduction of on chip area, active inductor is employed at the input side of the designed LNA for input impedance matching. The proposed UWB LNA is designed using Advanced Design System (ADS) at UWB frequency of 3.1-10.6 GHz. Simulation results show that the gain of 10.74+ 0.01 dB, noise figure is 4.855 dB, input return loss <-13 dB and 12.5 mW power consumption.  


2012 ◽  
Vol 605-607 ◽  
pp. 2057-2061
Author(s):  
Xin Yin ◽  
Yi Yao ◽  
Jin Ling Jia

This paper studies a low noise amplifier design method for 5.8G wireless local area network. Using the software of designing RF circuit ADS(Advanced Design System) and Avago Technologies’s ATF-36077,we designed a three-cascade LNA. In 5.725G~5.85GHz range, noise figure less than 0.5dB, more than 30dB gain, input and output standing wave ratio less than 1.3dB.The LNA meet the design requirements.


Author(s):  
T. Kanthi ◽  
D. Sharath Babu Rao

This paper is about Low noise amplifier topologies based on 0.18µm CMOS technology. A common source stage with inductive degeneration, cascode stage and folded cascode stage is designed, simulated and the performance has been analyzed. The LNA’s are designed in 5GHz. The LNA of cascode stage of noise figure (NF) 2.044dB and power gain 4.347 is achieved. The simulations are done in cadence virtuoso spectre RF.


Sign in / Sign up

Export Citation Format

Share Document