AgriWealth: IoT based Farming System

2022 ◽  
pp. 104447
Author(s):  
Deepika Sarpal ◽  
Raka Sinha ◽  
Madhavi Jha ◽  
T.N. Padmini
Keyword(s):  
Author(s):  
C. Van der Geest

I am a 30-year-old sharemilker on my parent's 600 cow developing farm near Blackball on the western side of the Grey Valley. Earlier this year I competed in the National Young Farmer of the Year competition and finished a close third. So what is information? There are two types of information that I use. There is data gathered from my farm to help fine tune the running of the day to day operations on the farm And directional information This is the information that arrives in papers and directs the long-term direction and plans of the farm and farming businesses. Due to the variability in weather on the Coast there is a greater need to monitor and adjust the farming system compared to an area like Canterbury. This was shown last year (2001/02) when the farm was undergoing a rapid period of development and I was under time restraints from increasing the herd size, building a new shed as well as developing the farm. The results of the time pressure was that day to day information gathering was lower resulting in per cow production falling by 11% or around $182 per cow. So what information was lacking that caused this large drop in profit. • Pasture growth rates • Cow condition • Nitrogen requirements • Paddock performance • Milk production • Pre-mating heat detection As scientists and advisers I hear you say that it is the farmer's responsibility to gather and analyse this information. You have the bigger topics to research and discover, gene marking, improving pasture species, sexing of sperm and ideas that I have not even contemplated yet. This is indeed very valuable research. Where would farming be without the invention of electric fences, artificial breeding and nitrogen research? But my problem is to take a farm with below average production to the top 10% in production with the existing technology and farming principles. I have all the technical information I need at the end of a phone. I can and do ring my consultant, fertiliser rep, vet, neighbour and due to the size and openness of New Zealand science, at present if they do not know I can ring an expert in agronomy, nutrition, soils and receive the answer that I require. I hope that this openness remains as in a time of privatisation and cost cutting it is a true advantage. I feel that for myself the next leap in information is not in the growing of grass or production of milk but in the tools to collect, store and utilise that information. This being tied to a financial benefit to the farming business is the real reason that I farm. Think of the benefits of being able to read pasture cover on a motorbike instantly downloaded, overlaying cow intake with milk production, changes in cow weight, daily soil temperature and predicted nitrogen response. Telling me low producing cows and poor producing paddocks, any potential feed deficits or surpluses. This would be a powerful information tool to use. The majority of this information is already available but until the restraints of time and cost are removed from data gathering and storage, this will not happen.


1983 ◽  
Vol 10 (1) ◽  
pp. 41-71 ◽  
Author(s):  
G J Barclay

SUMMARY Myrehead has revealed the eroded remnants of activity from the Beaker period (Period A) onwards, with actual settlement evinced only from about the early first millennium be. The three houses and the cooking pits of Period B may have been constructed and used sequentially. This open settlement was probably replaced during the mid first millennium bc, possibly without a break, by a palisaded enclosure (Period C), which may have contained a ring-groove house and a four-post structure. Continued domestic activity (Period D) was suggested by a single pit outside the enclosure, dated to the late first millennium bc/early first millennium ad. The limited evidence of the economy of the settlements suggests a mixed farming system.


2017 ◽  
Vol 4 (2) ◽  
pp. 23-27
Author(s):  
Mergia Abera ◽  
Tekleyohannes Berhanu

Participatory on-farm evaluation of improved forage crops was conducted in six mixed farming system districts of Southern Ethiopia with the objective to identify farmers preferred forage crops (legumes and grasses). Two annual forage legumes (Vigna unguiculata L. (cow pea) and Lablab purpureus (L.), two perennial legumes (Medicago sativa (L.) (alfalfa) and Desmodium intortum (Mill.) Urb. (green-leaf)), and three perennial grasses (Chloris gayana Knuth (Rhodes grass) and two Pennisetum purpureum Schumach (elephant grass) accessions (No.16800 and 16798)) were evaluated in the study. The major farmers’ criteria considered in the evaluation of forage species were vegetative growth, herbage yield, tillering, protection of soil erosion, palatability, perfor- mance under dry weather conditions, performance in marginal area under low input management, multipurpose use (conservation and soil fertility) and fast growing condition. The study showed that elephant grass accession No. 16798, 16800 and Chloris gayana adapted well and farmers preferred them for their higher herbage yield, vegetative growth, tillering ability and drought resistance. Even though the annual forage legumes Lablab purpureus and Vigna unguiculata were superior in their forage yield, the farmers preferred the perennial forage legumes (Desmodium intortum and Medicago sativa) mainly for their performance under dry weather condi- tion due to their longer growth period. Therefore, the consideration of farmers’ preference for forage crops is crucial for increased adoption of improved forage crops in the region.


2018 ◽  
Vol 9 (04) ◽  
pp. 20213-20217
Author(s):  
Dr. Ir. Ni.Gst.Ag.Gde Eka Martiningsih ◽  
Dr.Ir. I Putu Sujana, MS

Introduction of organic rice-based rice cultivation technology package through demplot is done in Subak Sungi 1 using ciherang variety. The number of farmers participating in demonstration plots in organic cultivation of paddy-based rice cultivation were 5 people, with age of farmers aged greater than 55 years occupying the highest percentage (45.45%), with elementary education level (72.75%), followed by high school education (18.25%), and junior high (9%). The average farmland area is 34.63 acres, with self-owned status (55,94%), status as penyakap 41,18% and rent status 2,88%. The farmers' response to the organic rice-based rice planting assessment is quite high, as evidenced by the evaluation that 100% of farmers participating in demonstration plots know and understand about organic rice system cultivation, and they agree to develop this cultivation system in the future. Demplot research results can increase the yield components and weight of dry grain harvest per hectare. Organic rice-based rice cultivation technology EVAGRO able to increase production of dry grain harvest significantly with a value of 6.8 tons / ha. There is a tendency of dry weight value of ciherang varieties of 6.8 tons / ha giving highest but not significantly different with PGPR organic based technology.


2019 ◽  
Vol 8 (9) ◽  
pp. 22-30
Author(s):  
SONIA HOODA

The study has made an attempt on resource use and economic efficiency of cucumber production under poly-house farming and open field farming. Primary data collected by using purposive sampling technique from selected districts. Sample of 50 farmers (25 Poly-house farmers and 25 Open field farmers) was taken from each district on the basis of availability. Secondary data was collected from Horticulture Department. For data analysis statistical tools average, percentage and Linear Cobb-Douglas Production Function was used. The study found that the yield of cucumber was more under poly-house farming as compare to open field farming system. The reason behind this was long harvesting period and more number of fruits per plant under poly-house farming conditions. The data specifies higher net returns per acre of cucumber under poly-house farming over open field farming, which implicit poly-house farming not only highly profitable but also economically viable as compared to open field farming in study area.


2018 ◽  
Vol 2 (95) ◽  
pp. 78-81
Author(s):  
L.I. Shkarivska

The changes of the soil’s humus soil within the rural areas are investigated for the organic farming system. The most significant impact of organic agriculture on humus content over 55% was observed on soddy podzolic soils (V>75%), the lowest –7,5% on typical chernozem (V≈16%). Changes in the qualitative composition of humus for the introduction of various types of organic substrates are analyzed.


Soil protection in agrolandscapes is especially necessary in conditions of intensification of production and increasing anthropogenic pressure on them. This complex should fit into the landscape farming system. The more intensive the load on the land in the farm, the higher the level of soil protection against destruction. The article notes that raising soil fertility, increasing crop yields and ecological environmental improvement are possible only on the basis of agrolandscape farming system, which allows to establish the correct ratio of arable land, meadows and forests. The transition to such a system of agriculture requires: development of a project for agrolandscape land management with a set of anti-erosion measures for each farm; adjusting the structure of sown areas taking into account market conditions, that is, increasing the area of productive crops in demand (winter and spring wheat, perennial grasses), which in combination with occupied and green manure pairs determine the structure of biologized crop rotation; widespread use of legumes (peas, vetch) as factors in the biologization of agriculture. The efficiency of expanding the area of perennial grasses to 25 % of arable land in some areas of the Non-Chernozem region and the Belgorod region is shown. Here, techniques that increase the efficiency of arable land are based on strict adherence to crop rotation with legumes, the use of adaptive varieties, and the use of biologized fertilizer and plant protection systems. It is noted that the creation of a system of shelterbelts makes it possible to reduce the cost of planting and growing them in comparison with single forest belts and what is very important for farmers is to sharply increase the return on their exploitation in the form of increased increases in crop yields. The creation of forest-sized landscapes will improve the environmental conditions for the cultivation of crops.


The farming system in West Bengal is being shifted by integration between the set of cash crops and the main food harvest process. This change in diversified farming systems, where smallholders have a production base in rice can complement production; affect technical efficiency and farm performance. The goal of this study was to investigate the status of crop diversification on smallholders in West Bengal. First, crop diversification regions were developed in West Bengal based on the Herfindahl index, which were categorized into three regions. Three sample districts were studied separately at the block level, and 915 small farmers from 41 sample villages of 9 sample blocks were interviewed through a good structure questionnaire for field studies from the sample districts. West Bengal was gradually moving towards multiple crop production. Furthermore, increasing rice production reduced the marginal use of inputs for the production of other crops. Farming and other vital factors such as HYVs area to GCA, average holding size and per capita income in some districts of West Bengal can be identified as determinants of crop diversification.


Sign in / Sign up

Export Citation Format

Share Document