Identification of a new Talaromyces strain DYM25 isolated from the Yap Trench as a biocontrol agent against Fusarium wilt of cucumber

2021 ◽  
pp. 126841
Author(s):  
Man Luo ◽  
Yimin Chen ◽  
Jianlin He ◽  
Xu Tang ◽  
Xudong Wu ◽  
...  
2002 ◽  
Vol 92 (8) ◽  
pp. 863-869 ◽  
Author(s):  
I. Larena ◽  
P. Melgarejo ◽  
A. De Cal

Production of conidia of Penicillium oxalicum (ATCC number pending), a biocontrol agent of Fusarium oxysporum f. sp. lycopersici, was tested in liquid and solid fermentation. P. oxalicum produced 250-fold more conidia in solid than in liquid fermentation at 30 days after inoculation of substrate. Solid fermentation was carried out in plastic bags (600 cm3) especially designed for solid fermentation (VALMIC) containing 50 g of peat/vermiculite (PV) (1:1, wt/wt) with 40% moisture, sealed, sterilized, and then inoculated with 1 ml of a conidial suspension of P. oxalicum (105 conidia g-1 dry substrate), sealed again, and incubated in darkness at 20 to 25°C for 30 days. Addition of amendments to PV in a proportion of 0.5 (wt/wt) significantly increased conidial production of P. oxalicum. The best production was obtained on PV plus meal of cereal grains (barley) or leguminous seeds (lentil) (100-fold higher). Conidial production obtained after 5 days of inoculation was similar to that obtained at 30 days. However, viability of conidia produced in PV plus lentil meal was 35% higher than that of conidia produced in PV plus barley meal. Changes in proportions (1:1:0.5, wt/wt/wt; 1:1:1, wt/wt/wt; 1:0.5:0.5, wt/wt/wt; 1:1:0.5, vol/vol/vol) of components of the substrate (peat/vermiculite/lentil meal) did not enhance production or viability of conidia. Optimal initial moisture in the substrate was 30 to 40%. At lower moistures, significant reductions of production of conidia were observed, particularly at 10%. There was a general decline in the number of conidia in bags with time of storage at -80, -20, 4, and 25°C, or at room temperature (range from 30 to 15°C), with the highest decline occurring from 60 to 180 days. Conidial viability also was reduced with time, except for conidia stored at -20°C. Fresh conidia produced in solid fermentation system or those conidia stored at -20°C for 180 days reduced Fusarium wilt of tomato by 49 and 61%, respectively.


2019 ◽  
Vol 65 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Qingrong Li ◽  
Sentai Liao ◽  
Huyu Zhi ◽  
Dongxu Xing ◽  
Yang Xiao ◽  
...  

Fusarium wilt is a devastating soil-borne disease caused mainly by highly host-specific formae speciales of Fusarium oxysporum. Antagonistic microorganisms play a very important role in Fusarium wilt control, and the isolation of potential biocontrol strains is becoming more and more important. We isolated a bacterial strain (SEM-9) from the high-temperature stage of silkworm excrement composting, which had a marked ability to solubilize phosphorus, promote the growth and increase the yield of the small Chinese cabbage, and which also exhibited considerable antagonistic effect towards Fusarium sambucinum and other fungi. The result of physiological and biochemical analyses, as well as genome sequencing, showed that SEM-9 was a strain of Bacillus subtilis. Through genome annotation and analysis, it was found that SEM-9 contained genes related to the regulation of biofilm formation, which may play an important role in colonization, and gene clusters encoding the biosynthesis of antimicrobials, such as surfactin, bacilysin, fengycin, and subtilosin-A. The production of such antifungal compounds may constitute the basis of the mode-of-action of SEM-9 against Fusarium spp. These data suggested that the SEM-9 strain has potential as both a biofertilizer and a biocontrol agent, with the potential to manage Fusarium wilt disease in crops.


2020 ◽  
Vol 11 ◽  
Author(s):  
Tao Jing ◽  
Dengbo Zhou ◽  
Miaoyi Zhang ◽  
Tianyan Yun ◽  
Dengfeng Qi ◽  
...  

Banana is a key staple food and fruit in countries all over the world. However, the development of the global banana industry is seriously threatened by Fusarium wilt disease, which is caused by Fusarium oxysporum f. sp. cubense (Foc). In particular, Foc tropical race 4 (Foc TR4) could infect more than 80% of global banana and plantain crops. Until now, there were no commercial chemicals or resistant cultivars available to control the disease. Biological control using actinomycetes is considered a promising strategy. In this study, 88 actinomycetes were isolated from a banana orchard without symptoms of Fusarium wilt disease for more than 10 years. An actinobacterial strain labeled as JBS5-6 has exhibited strong antifungal activities against Foc TR4 and other selected 10 phytopathogenic fungi. Based on phenotypic and biochemical traits as well as complete genome analysis, strain JBS5-6 was assigned to Streptomyces violaceusniger. Extracts of the strain inhibited the mycelial growth and spore germination of Foc TR4 by destroying membrane integrity and the ultrastructure of cells. The complete genome of strain JBS5-6 was sequenced and revealed a number of key function gene clusters that contribute to the biosynthesis of active secondary metabolites. Sixteen chemical compounds were further identified by gas chromatography-mass spectrometry (GC-MS). 5-hydroxymethyl-2-furancarboxaldehyde was one of the dominant components in strain JBS5-6 extracts. Moreover, fermentation broth of strain JBS5-6 significantly reduced the disease index of banana seedlings by inhibiting the infection of Foc TR4 in a pot experiment. Hence, strain JBS5-6 is a potential biocontrol agent for the management of disease and the exploitation of biofertilizer.


RSC Advances ◽  
2020 ◽  
Vol 10 (58) ◽  
pp. 34977-34985
Author(s):  
Tongtong Tang ◽  
Xing Sun ◽  
Qin Liu ◽  
Yuanhua Dong ◽  
Yuyong Xiang

The model plant tomato was used to verify the effect and mechanism of a novel discovered strain YH-07 which is a potential agent for biological control of soil borne disease named tomato Fusarium wilt.


Author(s):  
Anju Sehrawat ◽  
Aakanksha Khandelwal ◽  
Satyavir Singh Sindhu

Mesorhizobium sp. indirectly promote the growth of plants as a biocontrol agent by inhibiting the growth of pathogens particularly Fusarium wilt of chickpea. Out of 24 Mesorhizobium isolates obtained from chickpea nodules, eight isolates showed antagonistic effect against Fusarium oxysporum. Salinity stress severely affects growth, nodulation and yield of chickpea. Mesorhizobium isolates were tested for their salt tolerance capacity at 1, 2, 4, 6 and 8% NaCl concentrations. Only two Mesorhizobium isolates MCA5 and MCA22 were found salt-tolerant upto 8% of salt concentration. Maximum increase (45.5%) in shoot dry weight was observed by inoculation of isolate MCA20 at 40 days of chickpea growth under chillum jar conditions, whereas isolate MCA23 resulted in 166.2% increase in root dry weight. Likewise, 112.6% increase in shoot dry weight was observed on inoculation of MCA14 isolate at 80th day of observation. Further extensive research is required to understand the mechanism of potential Mesorhizobium isolates of chickpea in controlling Fusarium wilt disease and salt tolerance. Selection of mesorhizobia with twin functional traits (plant growth promoting and biocontrol agent) can be exploited as future biofertilizer in chickpea.


2019 ◽  
Vol 20 (20) ◽  
pp. 5240 ◽  
Author(s):  
Yunlong Li ◽  
Sanfeng Chen

Cucumber is an important vegetable crop in China. Fusarium wilt is a soil-borne disease that can significantly reduce cucumber yields. Paenibacillus polymyxa WLY78 can strongly inhibit Fusarium oxysporum f. sp. Cucumerium, which causes Fusarium wilt disease. In this study, we screened the genome of WLY78 and found eight potential antibiotic biosynthesis gene clusters. Mutation analysis showed that among the eight clusters, the fusaricidin synthesis (fus) gene cluster is involved in inhibiting the Fusarium genus, Verticillium albo-atrum, Monilia persoon, Alternaria mali, Botrytis cinereal, and Aspergillus niger. Further mutation analysis revealed that with the exception of fusTE, the seven genes fusG, fusF, fusE, fusD, fusC, fusB, and fusA within the fus cluster were all involved in inhibiting fungi. This is the first time that demonstrated that fusTE was not essential. We first report the inhibitory mode of fusaricidin to inhibit spore germination and disrupt hyphal membranes. A biocontrol assay demonstrated that fusaricidin played a major role in controlling Fusarium wilt disease. Additionally, qRT-PCR demonstrated that fusaricidin could induce systemic resistance via salicylic acid (SA) signal against Fusarium wilt of cucumber. WLY78 is the first reported strain to both produce fusaricidin and fix nitrogen. Therefore, our results demonstrate that WLY78 will have great potential as a biocontrol agent in agriculture.


2020 ◽  
Vol 8 (2) ◽  
pp. 236 ◽  
Author(s):  
Peng Cao ◽  
Chenxu Li ◽  
Han Wang ◽  
Zhiyin Yu ◽  
Xi Xu ◽  
...  

Microorganisms related to plant roots are vital for plant growth and health and considered to be the second genome of the plant. When the plant is attacked by plant pathogens, the diversity and community structure of plant-associated microbes might be changed. The goal of this study is to characterize differences in root-associated endophytic actinobacterial community composition and antifungal activity between Fusarium wilt diseased and healthy cucumber and screen actinobacteria for potential biological control of Fusarium wilt of cucumber. In the present research, three healthy plants (also termed “islands”) and three obviously diseased plants (naturally infected by F. oxysporum f. sp. cucumerinum) nearby the islands collected from the cucumber continuous cropping greenhouse were chosen as samples. Results of culture-independent and culture-dependent analysis demonstrated that actinomycetes in the healthy roots were significantly more abundant than those of diseased roots. Moreover, there were seven strains with antifungal activity against F. oxysporum f. sp. cucumerinum in healthy cucumber roots, but only one strain in diseased cucumber roots. Out of these eight strains, the isolate HAAG3-15 was found to be best as it had the strongest antifungal activity against F. oxysporum f. sp. cucumerinum, and also exhibited broad-spectrum antifungal activity. Thus, strain HAAG3-15 was selected for studying its biocontrol efficacy under greenhouse conditions. The results suggested that the disease incidence and disease severity indices of cucumber Fusarium wilt greatly decreased (p < 0.05) while the height and shoot fresh weight of cucumber significantly increased (p < 0.05) after inoculating strain HAAG3-15. On the basis of morphological characteristics, physiological and biochemical properties and 100% 16S ribosomal RNA (rRNA) gene sequence similarity with Streptomyces sporoclivatus NBRC 100767T, the isolate was assigned to the genus Streptomyces. Moreover, azalomycin B was isolated and identified as the bioactive compound of strain HAAG3-15 based on analysis of spectra using a bioactivity-guided method. The stronger antifungal activity against F. oxysporum f. sp. cucumerinum, the obvious effect on disease prevention and growth promotion on cucumber seedlings in the greenhouse assay, and the excellent broad-spectrum antifungal activities suggest that strain HAAG3-15 could be developed as a potential biocontrol agent against F. oxysporum f. sp. cucumerinum used in organic agriculture. These results suggested that the healthy root nearby the infected plant is a good source for isolating biocontrol and plant growth-promoting endophytes.


2021 ◽  
Vol 7 (9) ◽  
pp. 685
Author(s):  
Chongyuan Zhang ◽  
Weiwei Wang ◽  
Ming Xue ◽  
Zhen Liu ◽  
Qinman Zhang ◽  
...  

The use of synthetic fungicide needs to be gradually reduced because of its adverse effect on human health and the environment. An integrated approach combining fungicides with biological control agents (BCAs) can be used to reduce the fungicide doses, thereby minimizing the risks associated with chemical fungicides. In this study, the combined application of a BCA Trichoderma and a fungicide hymexazol was used to manage the cowpea wilt disease caused by Fusarium oxysporum. The Trichoderma SC012 strain, which is resistant to hymexazol, was screened out and identified as T. asperellum. T. asperellum SC012 showed hyperparasitism to F. oxysporum and could penetrate and encircle the hyphae of pathogen on a medium amended or not with hymexazol. When combined with hymexazol, the population density in the rhizosphere soil of cowpea showed no significant difference compared with the treatment Trichoderma used alone. When the concentration of T. asperellum SC012 or hymexazol was halved, their combined application could control cowpea wilt disease more effectively than their individual use. The findings showed that the combination of Trichoderma and hymexazol could reduce the use of chemical fungicide, which is eco-friendly and may be an important part of integrated control of Fusarium wilt in cowpea.


2019 ◽  
Vol 4 (2) ◽  
pp. 214-224
Author(s):  
Liya Audinah ◽  
Miftahul Ilmi

 Application of biocontrol agent is an environmental-ly-friendly method to overcome the Fusarium wilt in chilli due to Fusarium oxysporum. This research aimed to isolate actinomycetes antagonist to F. oxysporum FU3 as biocontrol agent from the soil of chilli plantation in Kulon Progo, Yogyakarta. The actinomycetes were isolated using SCA medium and followed by screening for anti-F. oxysporum FU3 on PDA. The filtrate from isolates which showing the highest inhibition zone was produced and tested against strain FU3. The best isolate was then characterized. There are four iso-lates of actinomycetes showing antagonistic activity against F. ox-ysporum (AK4, AK5, AK7, and AK9). The highest antagonistic ac-tivity was shown by AK5 filtrate with inhibitions on PDA and PDB are 41.71 ± 3.5 % and 81.77 ± 5.1 %, respectively. Further obser-vation showed that filtrate of AK5 caused abnormality and lysis on FU3 hyphae. From the results, we concluded that AK5 is a poten-tial biocontrol agent against F. oxysporum. Further studies to opti-mize the production and formulize the bio-fungicide are suggested 


Sign in / Sign up

Export Citation Format

Share Document