Grain size quantification by optical microscopy, electron backscatter diffraction, and magnetic force microscopy

Micron ◽  
2017 ◽  
Vol 101 ◽  
pp. 41-47 ◽  
Author(s):  
Hansheng Chen ◽  
Yin Yao ◽  
Jacob A Warner ◽  
Jiangtao Qu ◽  
Fan Yun ◽  
...  
2007 ◽  
Vol 101 (9) ◽  
pp. 09M507 ◽  
Author(s):  
A. Koblischka-Veneva ◽  
M. R. Koblischka ◽  
J. D. Wei ◽  
Y. Zhou ◽  
S. Murphy ◽  
...  

2013 ◽  
Vol 19 (S4) ◽  
pp. 103-104
Author(s):  
C.B. Garcia ◽  
E. Ariza ◽  
C.J. Tavares

Zinc Oxide is a wide band-gap compound semiconductor that has been used in optoelectronic and photovoltaic applications due to its good electrical and optical properties. Aluminium has been an efficient n-type dopant for ZnO to produce low resistivity films and high transparency to visible light. In addition, the improvement of these properties also depends on the morphology, crystalline structure and deposition parameters. In this work, ZnO:Al films were produced by d.c. pulsed magnetron sputtering deposition from a ZnO ceramic target (2.0 wt% Al2O3) on glass substrates, at a temperature of 250 ºC.The crystallographic orientation of aluminum doped zinc oxide (ZnO:Al) thin films has been studied by Electron Backscatter Diffraction (EBSD) technique. EBSD coupled with Scanning Electron Microscopy (SEM) is a powerful tool for the microstructural and crystallographic characterization of a wide range of materials.The investigation by EBSD technique of such films presents some challenges since this analysis requires a flat and smooth surface. This is a necessary condition to avoid any shadow effects during the experiments performed with high tilting conditions (70º). This is also essential to ensure a good control of the three dimensional projection of the crystalline axes on the geometrical references related to the sample.Crystalline texture is described by the inverse pole figure (IPF) maps (Figure 1). Through EBSD analysis it was observed that the external surface of the film presents a strong texture on the basal plane orientation (grains highlighted in red colour). Furthermore it was possible to verify that the grain size strongly depends on the deposition time (Figure 1 (a) and (b)). The electrical and optical film properties improve with increasing of the grain size, which can be mainly, attributed to the decrease in scattering grain boundaries which leads to an increasing in carrier mobility (Figure 2).The authors kindly acknowledge the financial support from the Portuguese Foundation for Science and Technology (FCT) scientific program for the National Network of Electron Microscopy (RNME) EDE/1511/RME/2005.


2019 ◽  
Vol 52 (4) ◽  
pp. 828-843 ◽  
Author(s):  
Dorian Delbergue ◽  
Damien Texier ◽  
Martin Lévesque ◽  
Philippe Bocher

X-ray diffraction (XRD) is a widely used technique to evaluate residual stresses in crystalline materials. Several XRD measurement methods are available. (i) The sin2ψ method, a multiple-exposure technique, uses linear detectors to capture intercepts of the Debye–Scherrer rings, losing the major portion of the diffracting signal. (ii) The cosα method, thanks to the development of compact 2D detectors allowing the entire Debye–Scherrer ring to be captured in a single exposure, is an alternative method for residual stress measurement. The present article compares the two calculation methods in a new manner, by looking at the possible measurement errors related to each method. To this end, sets of grains in diffraction condition were first identified from electron backscatter diffraction (EBSD) mapping of Inconel 718 samples for each XRD calculation method and its associated detector, as each method provides different sets owing to the detector geometry or to the method specificities (such as tilt-angle number or Debye–Scherrer ring division). The X-ray elastic constant (XEC) ½S 2, calculated from EBSD maps for the {311} lattice planes, was determined and compared for the different sets of diffracting grains. It was observed that the 2D detector captures 1.5 times more grains in a single exposure (one tilt angle) than the linear detectors for nine tilt angles. Different XEC mean values were found for the sets of grains from the two XRD techniques/detectors. Grain-size effects were simulated, as well as detector oscillations to overcome them. A bimodal grain-size distribution effect and `artificial' textures introduced by XRD measurement techniques are also discussed.


2011 ◽  
Vol 702-703 ◽  
pp. 165-168 ◽  
Author(s):  
Aicha Loucif ◽  
Thierry Baudin ◽  
François Brisset ◽  
Roberto B. Figueiredo ◽  
Rafik Chemam ◽  
...  

This investigation uses electron backscatter diffraction (EBSD) to study the development of microtexture with increasing deformation in an AlMgSi alloy having an initial grain size of about 150 µm subjected to high pressure torsion (HPT) up to a total of 5 turns. An homogeneous microstructure was achieved throughout the disc sample at high strains with the formation of ultra-fine grains. Observations based on orientation distribution function (ODF) calculation reveals the presence of the torsion texture components often reported in the literature for f.c.c. materials. In particular, the C {001}<110> component was found to be dominant. Furthermore, no significant change in the texture sharpness was observed by increasing the strain.


Sign in / Sign up

Export Citation Format

Share Document