Degradation kinetics of ultrathin HfO2 layers on Si(100) during vacuum annealing monitored with in situ XPS/LEIS and ex situ AFM

2007 ◽  
Vol 47 (4-5) ◽  
pp. 657-659 ◽  
Author(s):  
A. Zenkevich ◽  
Yu. Lebedinskii ◽  
G. Scarel ◽  
M. Fanciulli ◽  
A. Baturin ◽  
...  
2012 ◽  
Vol 6 (4) ◽  
pp. 196-202 ◽  
Author(s):  
Naser Maheri-Sis ◽  
Mohammad Chamani ◽  
Ali Asghar Sadeghi ◽  
Ali Mirzaaghaz ◽  
Kambiz Nazeradl ◽  
...  

2016 ◽  
Vol 41 (1) ◽  
pp. 28-36 ◽  
Author(s):  
F. F. Sani ◽  
L. K. Nuswantara ◽  
E. Pangestu ◽  
F. Wahyono ◽  
J. Achmadi

Two adult male sheeps fitted with rumen cannula were used in two experiments to study the effects of synchronization of carbohydrate and nitrogen supply in sugarcane bagasse based total mixed ration (TMR) on in situ nutrient degradation. The first experiment was aimed to create three TMR with different synchronization index. Ingredient feedstuffs of TMR were evaluated for its in situ organic matter (OM) and nitrogen (N) degradation kinetics. On the basis of the OM and N degradation kinetics of feedstuffs, three sugarcane bagasse based TMR were formulated with synchronization indexes of 0.37; 0.50; and 0.63; respectively. The TMR had similar levels of crude protein (CP), total digestible nutrients, and neutral detergent fiber (NDF). In the second experiment, the three TMR with different synchronization index were evaluated for in situ degradability characteristics of OM, CP, NDF, and sulfur. The in situ degradation of OM in TMR were decreased (P<0.05) with the increasing of synchronization index. The higher synchronization index in TMR increased (P<0.05) CP degradation of CP. The NDF degradation decreased slightly by the alteration of synchronization index in TMR. The higher synchronization index in TMR reduced (P<0.05) in situ sulfur degradation, and this may not support to effects of synchronization of carbohydrate and nitrogen supply.  


2016 ◽  
Vol 38 (2) ◽  
pp. 171 ◽  
Author(s):  
Renê Ferreira Costa ◽  
Daniel Ananias de Assis Pires ◽  
Marielly Maria Almeida Moura ◽  
José Avelino Santos Rodrigues ◽  
Vicente Ribeiro Rocha Júnior ◽  
...  

This study aimed to evaluate in situ degradability and degradation kinetics of DM, NDF and ADF of silage, with or without tannin in the grains. Two isogenic lines of grain sorghum (CMS-XS 114 with tannin and CMS-XS 165 without tannin) and two sorghum hybrids (BR-700 dual purpose with tannin and BR-601 forage without tannin) were ensiled; dried and ground silage samples were placed in nylon bags and introduced through the fistulas. After incubation for 6, 12, 24, 48, 72 and 96 hours, bags were taken for subsequent analysis of fibrous fractions. The experimental design was completely randomized with 4 replicates and 4 treatments and means compared by Tukey’s test at 5% probability. As for the DM degradation rate, silage of CMSXS165without tannin was superior. Silages of genotypes BR700 and CMSXS 114 with tannin showed the highest values of indigestible ADF (59.54 and 43.09%). Regarding the NDF, the potential degradation of silage of CMSXS165 line without tannin was superior. Tannin can reduce ruminal degradability of the dry matter and fibrous fractions. 


2003 ◽  
Vol 43 (9-11) ◽  
pp. 1785-1790
Author(s):  
P. Soussan ◽  
G. Lekens ◽  
R. Dreesen ◽  
W. De Ceuninck ◽  
E. Beyne
Keyword(s):  
Ex Situ ◽  

2019 ◽  
Vol 20 (6) ◽  
pp. 1366 ◽  
Author(s):  
Baoli Sun ◽  
Luciana L. Prates ◽  
Peiqiang Yu

The aim of this study was to reveal an interactive curve-linear relationship between altered carbohydrate macromolecular structure traits of hulless barley cultivars and nutrient utilization, biodegradation, as well as bioavailability. The cultivars had different carbohydrate macromolecular traits, including amylose (A), amylopectin (AP), and β-glucan contents, as well as their ratios (A:AP). The parameters assessed included: (1) chemical and nutrient profiles; (2) protein and carbohydrate sub-fractions partitioned by the Cornell Net Carbohydrate and Protein System (CNCPS); (3) total digestible nutrients (TDN) and energy values; and (4) in situ rumen degradation kinetics of nutrients and truly absorbed nutrient supply. The hulless barley samples were analyzed for starch (ST), crude protein (CP), total soluble crude protein (SCP), etc. The in situ incubation technique was performed to evaluate the degradation kinetics of the nutrients, as well as the effective degradability (ED) and bypass nutrient (B). Results showed that the carbohydrates (g/kg DM) had a cubic relationship (p < 0.05), with the A:AP ratio and β-glucan level; while the starch level presented a quadratic relationship (p < 0.05), with the A:AP ratio and cubic relationship (p < 0.05), with β-glucan level. The CP and SCP contents had a cubic relationship (p < 0.05) with the A:AP ratio and β-glucan level. The altered carbohydrate macromolecular traits were observed to have strongly curve-linear correlations with protein and carbohydrate fractions partitioned by CNCPS. For the in situ protein degradation kinetics, there was a quadratic effect of A:AP ratio on the rumen undegraded protein (RUP, g/kg DM) and a linear effect of β-glucan on the bypass protein (BCP, g/kg DM). The A:AP ratio and β-glucan levels had quadratic effects (p < 0.05) on BCP and EDCP. For ST degradation kinetics, the ST degradation rate (Kd), BST and EDST showed cubic effects (p < 0.05) with A:AP ratio. The β-glucan level showed a cubic effect on EDST (g/kg DM) and a quadratic effect on BST (g/kg ST or g/kg DM) and EDST (g/kg DM). In conclusion, alteration of carbohydrate macromolecular traits in hulless barley significantly impacted nutrient utilization, metabolic characteristics, biodegradation, and bioavailability. Altered carbohydrate macromolecular traits curve-linearly affected the nutrient profiles, protein and carbohydrate fractions, total digestible nutrient, energy values, and in situ degradation kinetics.


2009 ◽  
Vol 2009 ◽  
pp. 171-171
Author(s):  
M Danesh Mesgaran ◽  
T Tashakkori ◽  
A Heravi Moussavi ◽  
S Danesh Mesgaran ◽  
A Vakili ◽  
...  

In situ procedure is a direct method of measuring the rumen degradation kinetic of a feed nutrient. Data obtained by this technique are generally analysed using an exponential curve (Ørskov and McDonald, 1979). However, very low attention has been paid to choice of mathematical model to fit the curves and goodness-of-fit of the model. Lopez et al. (1999) pointed out that the disappearance of some feed components, particularly structural carbohydrates, exhibits a larger variety of forms than for crude protein (CP). In the present study, two different mathematical models of a straight line or a negative exponential (France et al., 1990; and Ørskov and McDonald, 1979) were selected to evaluate in situ degradation kinetics of protein fractions including true protein (TP), neutral-detergent insoluble protein (NDIP) and acid-detergent insoluble protein (ADIP) of various oilseed meals (cottonseed meal (CSM), soyabean meal (SM) and rapeseed meal (RM)).


2018 ◽  
Vol 96 (11) ◽  
pp. 4835-4844 ◽  
Author(s):  
Qiujin Li ◽  
Bai Xue ◽  
Yumei Zhao ◽  
Tianqi Wu ◽  
Haichao Liu ◽  
...  

2020 ◽  
Author(s):  
Fabio Arzilli ◽  
Giuseppe La Spina ◽  
Mike R. Burton ◽  
Margherita Polacci ◽  
Nolwenn Le Gall ◽  
...  

&lt;p&gt;Basaltic eruptions are the most common form of volcanism on Earth and planetary bodies. The low viscosity of basaltic magmas generally favours effusive and mildly explosive volcanic activity. Highly explosive basaltic eruptions occur less frequently and their eruption mechanism still remains subject to debate, with implications for the significant hazard associated with explosive basaltic volcanism. Particularly, highly explosive eruptions require magma fragmentation, yet it is unclear how basaltic magmas can reach the fragmentation threshold.&lt;/p&gt;&lt;p&gt;In volcanic conduits, the crystallisation kinetics of an ascending magma are driven by degassing and cooling. So far, the crystallisation kinetics of magmas have been estimated through ex situ crystallization experiments. However, this experimental approach induces underestimation of crystallization kinetics in silicate melts. The&amp;#160;&amp;#160; crystallization experiments reported in this study were performed in situ at Diamond Light Source (experiment EE12392 at the I12 beamline), Harwell, UK, using basalt from the 2001 Etna eruption as the starting material. We combined a bespoke high-temperature environmental cell with fast synchrotron X-ray microtomography to image the evolution of crystallization in real time. After 4 hours at sub-liquidus conditions (1170 &amp;#176;C and 1150 &amp;#176;C) the system was perturbed through a rapid cooling (0.4 &amp;#176;C/s), inducing a sudden increase of undercooling. Our study reports the first in situ observation of exceptionally rapid plagioclase and clinopyroxene crystallisation in trachybasaltic magmas. We combine these constraints on crystallisation kinetics and viscosity evolution with a numerical conduit model to show that exceptionally rapid syn-eruptive crystallisation is the fundamental process required to trigger basaltic magma fragmentation under high strain rates. Our in situ experimental and natural observations combined with a numerical conduit model allow us to conclude that pre-eruptive temperatures &lt;1,100&amp;#176;C can promote highly explosive basaltic eruptions, such as Plinian volcanism, in which fragmentation is induced by fast syn-eruptive crystal growth under high undercooling and high decompression rates. This implies that all basaltic systems on Earth have the potential to produce powerful explosive eruptions.&lt;/p&gt;


2001 ◽  
Vol 7 (S2) ◽  
pp. 408-409
Author(s):  
J. Lian ◽  
L. M. Wang ◽  
S. X. Wang ◽  
R. C. Ewing

The ion irradiation-induced crystalline-to-amorphous transformation has been studied in many complex ceramics. Direct impact amorphization has been considered to be one of the fundamental amorphization mechanisms for complex ceramics under heavy ion irradiation . Based on the directimpact model, a highly energetic incident ion transfers its kinetic energy to the target as a thermal spike within 10“13 sec creating a “molten-like” displacement cascade, typically nanometer-scaled in diameter (as indicated by the result of a computer simulation in Fig. 1). This “molten” zone quickly quenches to a small amorphous domain within a few pico-seconds. Epitaxial recrystallization occurs around the amorphous/crystalline interface, so that the size of amorphous domains decrease with time. The accumulation and overlap of small amorphous domains eventually leads to complete amorphization of the irradiated material. Although the in-situTEM technique with the setup shown in Fig. 2 has been extensively applied to the study of the amorphization process in complex ceramics, most of the previous studies relied on in-situobservation of the electron diffraction pattern, and there has been a lack of solid evidence of direct impact amorphization due to the small nature of the cascades and the rapid kinetics of its evolution.


Sign in / Sign up

Export Citation Format

Share Document