Thermal stress reduction strategy for high-temperature power electronics with Ag sintering

2021 ◽  
Vol 127 ◽  
pp. 114379
Author(s):  
Hui Ren ◽  
Guisheng Zou ◽  
Qiang Jia ◽  
Zhongyang Deng ◽  
Chengjie Du ◽  
...  
Author(s):  
Si-Hwa Jeong ◽  
Min-Gu Won ◽  
Nam-Su Huh ◽  
Yun-Jae Kim ◽  
Young-Jin Oh ◽  
...  

In this paper, the thermal stress characteristics of the pipe-in-pipe (PIP) system under high temperature condition are analyzed. The PIP is a type of pipe applied in sodium-cooled faster reactor (SFR) and has a different geometry from a single pipe. In particular, under the high temperature condition of the SFR, the high thermal stress is generated due to the temperature gradient occurring between the inner pipe and outer pipe. To investigate the thermal stress characteristics, three cases are considered according to geometry of the support. The fully constrained support and intermediate support are considered for case 1 and 2, respectively. For case 3, both supports are applied to the actual curved pipe. The finite element (FE) analyses are performed in two steps for each case. Firstly, the heat transfer analysis is carried out considering the thermal conduction, convection and radiation conditions. From the heat transfer analysis, the temperature distribution results in the piping system are obtained. Secondly, the structural analysis is performed considering the temperature distribution results and boundary conditions. Finally, the effects of the geometric characteristics on the thermal stress in the PIP system are analyzed.


2015 ◽  
Author(s):  
Jon W. Teets ◽  
J. Michael Teets

A SUNTRACKER (illustrated in figure1), is a Concentrating Solar Power (CSP) unit, in the category of solar dish engines. The novel solar dish engine module (shown in figure 2) is designed to provide 10.1kW electric power (measured at the engine output electric power lugs), from a conversion of 21kW solar energy from the solar dish reflective sun light to the high temperature receiver focal point. Total electric power output from the solar dish engine module is attributed to combined cycles, closed brayton cycle (CBC) and a organic rankine cycle (ORC), both of which are hermetically sealed to atmosphere. The CBC engine receives 21kW solar energy from a solar dish, estimated to have 27 square meters (291 square feet) reflective surface area. However, unlike the photovoltaic (PV) units, the SUNTRACKER will provide increased use of available solar energy from sunlight. Concentrated sunlight from the dish will focus on the CBC engine receiver, which in turn heats the working fluid media to as much as 1600F, pending the ratio of solar dish to receiver areas. A specific gas mixture of xenon/helium, with excellent thermodynamic properties is used for the high temperature application. Turbomachinery in the CBC engine has one moving part / assembly (compressor impeller, alternator rotor and turbine rotor), mounted on compliant foil bearings. Reference figure 4 as an example. The engine operates with a compressor impeller stage pressure ratio 1.6, and is recuperated. Electric power, measured at the CBC engine electric power lugs, is 6.4kW. The CBC engine is not new, (a closed Brayton cycle, sealed to atmosphere) [1], [4], [8], [18], [19]. However, the application to extract thermal energy from the sunlight and provide electric power in commercial and residential use is (patented). In addition, to increase the efficiency of solar energy conversion to electric power, waste heat from the CBC engine provides thermal energy to an ORC engine, to generate an additional electrical output of 3.7kW (measured at the output electric power lugs). With use of an ORC system, the size of the radiator (CBC unit) for heat rejection is reduced significantly. Working fluid HFC-RC245fa [10] was selected for the ORC unit, based on the low temperature application. Also, as with the CBC turbomachinery, the ORC rotor assembly has one moving part, comprised of a pump impeller, alternator rotor and turbine rotor. With the two engines combined, total system thermal efficiency is 48% (10.1kW electric power out / 21kW solar energy in). However, power electronics are needed for conversion of high frequency voltage at the engine output electric power leads to 60/50 Hz power, for customer use. Power electronics losses for this machine, debits the power 0.5 kW. Thus total electric power to the customer, as measured at power electronics output terminals, is 9.6kW. With solar energy, from the reflective sunlight solar dish 21kW and measured output power from the power electronics 9.6kW, the conversion of solar energy to useful electric power an efficiency 46% (i.e. 9.6kW / 21kW). In addition, the design does not require external water / liquid for cooling.


2021 ◽  
Author(s):  
Anjan Debnath ◽  
Temitayo O. Olowu ◽  
Sukanta Roy ◽  
Arif Sarwat

2018 ◽  
Vol 43 (3) ◽  
pp. 149-153 ◽  
Author(s):  
Cheryl Delgado ◽  
Margaret Toukonen ◽  
Corinne Wheeler

Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 930 ◽  
Author(s):  
Martin Malý ◽  
Christian Höller ◽  
Mateusz Skalon ◽  
Benjamin Meier ◽  
Daniel Koutný ◽  
...  

The aim of this study is to observe the effect of process parameters on residual stresses and relative density of Ti6Al4V samples produced by Selective Laser Melting. The investigated parameters were hatch laser power, hatch laser velocity, border laser velocity, high-temperature preheating and time delay. Residual stresses were evaluated by the bridge curvature method and relative density by the optical method. The effect of the observed process parameters was estimated by the design of experiment and surface response methods. It was found that for an effective residual stress reduction, the high preheating temperature was the most significant parameter. High preheating temperature also increased the relative density but caused changes in the chemical composition of Ti6Al4V unmelted powder. Chemical analysis proved that after one build job with high preheating temperature, oxygen and hydrogen content exceeded the ASTM B348 limits for Grade 5 titanium.


2021 ◽  
Author(s):  
Jingxiao Li ◽  
Zhiling Fang ◽  
Lin Fu ◽  
Shangchen Fu ◽  
Lihua Shi ◽  
...  

Abstract Lightning strike is one of the natural disasters to the roof components of ancient buildings. To investigate the causes and damage effects of lightning strikes on the roofing glazed tiles of ancient buildings, artificial lightning strike tests were carried out on glazed tiles. Based on the experiment results, a coupled electrical–thermal finite element model of mortar-containing glazed tiles was established and the Joule heat effect of lightning current was further investigated. The results show that when the lightning channel is attached to the surface of the enamel and body with a low electrical conductivity, the lightning current is mainly released in the form of surface flashover, and a minor damage is induced along the flashover path; when the lightning channel is attached to the mortar with a high electrical conductivity, the lightning current is injected into the mortar, resulting in significant tile damage. The spatial distributions of the temperature present clear gradient characteristics. The high-temperature area appears in the mortar while the high–thermal–stress area appears in the body connected to the grounding rail. As the peak of the lightning current increases, both the high-temperature and high–thermal–stress areas of the glazed tiles expand. The combination of the experiments and the numerical analysis results demonstrate that the damage mechanism of lightning Joule heat effect to glazed tiles may include two aspects. One is the internal explosive force generated from the sharp vaporization and expansion of the moisture inside the tiles due to rapid temperature increase, and the other is the thermal stress caused by the uneven temperature distribution.


2007 ◽  
Vol 22 (2) ◽  
pp. 392-398 ◽  
Author(s):  
Jian Yin ◽  
Zhenxian Liang ◽  
Jacobus Daniel van Wyk

Author(s):  
Yoshihiro Ishikawa ◽  
Yukihiko Okuda ◽  
Naoto Kasahara

In the nuclear power plants, there are many branch pipes with closed-end which are attached vertically to the main pipe. We consider a situation in which the high temperature water is transported in the main pipe, the branch pipe is filled with stagnant water which has lower temperature than the main flow, and the end of the branch pipe is closed. At the branch connection part, it is known that a cavity flow is induced by the shear force of the boundary layer which separates from the leading edge of the branch pipe along the main pipe wall. In cases where the high temperature water penetrates into the branch pipe, there is a possibility that a steep and large temperature gradient field, called “thermal stratification layer” is formed at the boundary between high and low temperature water in the branch pipe. If the thermal stratification layer is formed in a bend pipe, which is used for connecting the vertical branch pipe and to a horizontal pipe, at the same time, the temperature fluctuation by the thermal stratification layer motion occurs, there may cause the thermal stress in the piping material. Furthermore, keeping the piping material under the thermal stress, there might be a possibility of a crack on the surface of the bend pipe. For this reason, the evaluation of the position where the thermal stratification layer reaches is very important during early piping design process. And, deeply understanding regarding the phenomena, is also important. However, because of the complexities of the phenomena, it is difficult to immediately clarify the whole mechanisms of the thermal stress arising due to the temperature fluctuation by the thermal stratification layer change. The complete prediction method for the position of the thermal stratification layer based on the mechanisms that is able to be applied to any piping system, any temperature and any velocity conditions, is also difficult. Therefore, a practical approach is required. The authors attempt to develop the practical estimation method for the thermal stratification layer position using the three-dimensional Navier-Stokes simulation which was based on the Reynolds-average in order to reduce the computational costs. In this paper, three different configurations of the piping were simulated and the simulation results were compared with the experimental results obtained by the other research group.


Sign in / Sign up

Export Citation Format

Share Document