scholarly journals Protein Aggregation Triggered by Rewired Protein Homeostasis during Neuronal Differentiation

2020 ◽  
Vol 78 (2) ◽  
pp. 195-196 ◽  
Author(s):  
Cristen M. Molzahn ◽  
Thibault Mayor
2017 ◽  
Vol 216 (8) ◽  
pp. 2295-2304 ◽  
Author(s):  
Norfadilah Hamdan ◽  
Paraskevi Kritsiligkou ◽  
Chris M. Grant

Disturbances in endoplasmic reticulum (ER) homeostasis create a condition termed ER stress. This activates the unfolded protein response (UPR), which alters the expression of many genes involved in ER quality control. We show here that ER stress causes the aggregation of proteins, most of which are not ER or secretory pathway proteins. Proteomic analysis of the aggregated proteins revealed enrichment for intrinsically aggregation-prone proteins rather than proteins which are affected in a stress-specific manner. Aggregation does not arise because of overwhelming proteasome-mediated degradation but because of a general disruption of cellular protein homeostasis. We further show that overexpression of certain chaperones abrogates protein aggregation and protects a UPR mutant against ER stress conditions. The onset of ER stress is known to correlate with various disease processes, and our data indicate that widespread amorphous and amyloid protein aggregation is an unanticipated outcome of such stress.


2015 ◽  
Author(s):  
Florian Arnhold ◽  
Karl-Heinz Guehrs ◽  
Anna von Mikecz

Mercury (Hg) is a bioaccumulating trace metal that globally circulates the atmosphere and waters in its elemental, inorganic and organic chemical forms. While Hg represents a notorious neurotoxicant, the underlying cellular pathways are insufficiently understood. We identify amyloid protein aggregation in the cell nucleus as a novel pathway of Hg-bio-interactions. By mass spectrometry of purified protein aggregates a subset of spliceosomal components and nucleoskeletal protein lamin B1 were detected as constituent parts of an Hg-induced nuclear aggregome network. The aggregome network was located by confocal imaging of amyloid-specific antibodies and dyes to amyloid cores within splicing-speckles that additionally recruit components of the ubiquitin-proteasome system. Hg significantly enhances global proteasomal activity in the nucleus suggesting that formation of amyloid speckles plays a role in maintenance of protein homeostasis. RNAi knock down showed that lamin B1 for its part regulates amyloid speckle formation and thus likewise participates in nuclear protein homeostasis. As the Hg-induced cascade of interactions between the nucleoskeleton and protein homeostasis reduces neuronal signalling, amyloid fibrillation in the cell nucleus is introduced as a feature of Hg-neurotoxicity that opens new avenues of future research. Similar to protein aggregation events in the cytoplasm that are controlled by the cytoskeleton, amyloid fibrillation of nuclear proteins may be driven by the nucleoskeleton.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jason C. Sang ◽  
Eric Hidari ◽  
Georg Meisl ◽  
Rohan T. Ranasinghe ◽  
Maria Grazia Spillantini ◽  
...  

AbstractAggregation of α-synuclein (α-syn) is closely linked to Parkinson’s disease (PD) and the related synucleinopathies. Aggregates spread through the brain during the progression of PD, but the mechanism by which this occurs is still not known. One possibility is a self-propagating, templated-seeding mechanism, but this cannot be established without quantitative information about the efficiencies and rates of the key steps in the cellular process. To address this issue, we imaged the uptake and seeding of unlabeled exogenous α-syn fibrils by SH-SY5Y cells and the resulting secreted aggregates, using super-resolution microscopy. Externally-applied fibrils very inefficiently induced self-assembly of endogenous α-syn in a process accelerated by the proteasome. Seeding resulted in the increased secretion of nanoscopic aggregates (mean 35 nm diameter), of both α-syn and Aβ. Our results suggest that cells respond to seed-induced disruption of protein homeostasis predominantly by secreting nanoscopic aggregates; this mechanism may therefore be an important protective response by cells to protein aggregation.


2015 ◽  
Author(s):  
Florian Arnhold ◽  
Karl-Heinz Guehrs ◽  
Anna von Mikecz

Mercury (Hg) is a bioaccumulating trace metal that globally circulates the atmosphere and waters in its elemental, inorganic and organic chemical forms. While Hg represents a notorious neurotoxicant, the underlying cellular pathways are insufficiently understood. We identify amyloid protein aggregation in the cell nucleus as a novel pathway of Hg-bio-interactions. By mass spectrometry of purified protein aggregates a subset of spliceosomal components and nucleoskeletal protein lamin B1 were detected as constituent parts of an Hg-induced nuclear aggregome network. The aggregome network was located by confocal imaging of amyloid-specific antibodies and dyes to amyloid cores within splicing-speckles that additionally recruit components of the ubiquitin-proteasome system. Hg significantly enhances global proteasomal activity in the nucleus suggesting that formation of amyloid speckles plays a role in maintenance of protein homeostasis. RNAi knock down showed that lamin B1 for its part regulates amyloid speckle formation and thus likewise participates in nuclear protein homeostasis. As the Hg-induced cascade of interactions between the nucleoskeleton and protein homeostasis reduces neuronal signalling, amyloid fibrillation in the cell nucleus is introduced as a feature of Hg-neurotoxicity that opens new avenues of future research. Similar to protein aggregation events in the cytoplasm that are controlled by the cytoskeleton, amyloid fibrillation of nuclear proteins may be driven by the nucleoskeleton.


2019 ◽  
Author(s):  
Sarah M. Ryan ◽  
Michael Almassey ◽  
Amelia M. Burch ◽  
Gia Ngo ◽  
Julia M. Martin ◽  
...  

SummaryAs organisms age, they often accumulate protein aggregates that are thought to be toxic, potentially leading to age-related diseases. This accumulation of protein aggregates is partially attributed to a failure to maintain protein homeostasis. A variety of genetic factors have been linked to longevity, but how these factors also contribute to protein homeostasis is not completely understood. In order to understand the relationship between aging and protein aggregation, we tested how a gene that regulates lifespan and age-dependent locomotor behaviors, p38 MAPK (p38Kb), influences protein homeostasis as an organism ages. We find that p38Kb regulates age-dependent protein aggregation through an interaction with the Chaperone-Assisted Selective Autophagy complex. Furthermore, we have identified Lamin as an age-dependent target of p38Kb and the Chaperone-Assisted Selective Autophagy complex.


2020 ◽  
Author(s):  
Stefanie Andersson ◽  
Antonia Romero ◽  
Joana Isabel Rodrigues ◽  
Sansan Hua ◽  
Xinxin Hao ◽  
...  

ABSTRACTExposure to toxic metals and metalloids such as cadmium and arsenic results in widespread misfolding and aggregation of cellular proteins. How these protein aggregates are formed in vivo, the mechanisms by which they affect cells, and how cells prevent their accumulation during environmental stress is not fully understood. To find components involved in these processes, we performed a genome-wide imaging screen and identified yeast deletion mutants with either enhanced or reduced protein aggregation levels during arsenite exposure. Mutants with reduced aggregation levels were enriched for functions related to protein biosynthesis and transcription, whilst functions related to cellular signalling, metabolism, and protein folding and degradation were overrepresented among mutants with enhanced aggregation levels. On a genome-wide scale, protein aggregation correlated with arsenite resistance and sensitivity, indicating that many of the identified factors are crucial to safeguard protein homeostasis (proteostasis) and to protect against arsenite toxicity. Dedicated follow-up experiments indicated that intracellular arsenic is a direct cause of protein aggregation and that accurate transcriptional and translational control are crucial for proteostasis during arsenite stress. Specifically, we provide evidence that global transcription affects protein aggregation levels, that loss of transcriptional control impacts proteostasis through distinct mechanisms, and that translational repression is central to control protein aggregation and cell viability. Some of the identified factors are associated with pathological conditions suggesting that arsenite-induced protein aggregation may impact disease processes. The broad network of cellular systems that impinge on proteostasis during arsenic stress provides a valuable resource and a framework for further elucidation of the mechanistic details of metalloid toxicity and pathogenesis.AUTHOR SUMMARYHuman exposure to poisonous metals is increasing in many parts of the world and chronic exposure is associated with certain protein folding-associated disorders such as Alzheimer’s disease and Parkinson’s disease. While the toxicity of many metals is undisputed, their molecular modes of action have remained unclear. Recent studies revealed that toxic metals such as arsenic and cadmium profoundly affect the correct folding of proteins, resulting in the accumulation of toxic protein aggregates. In this study, we used high-content microscopy to identify a broad network of cellular systems that impinge on protein homeostasis and cell viability during arsenite stress. Follow-up experiments highlight the importance of accurate transcriptional and translational control for mitigating arsenite-induced protein aggregation and toxicity. Some of the identified factors are associated with pathological conditions suggesting that arsenite-induced protein aggregation may impact disease processes. The broad network of cellular systems that impinge on proteostasis during arsenic stress provides a valuable resource and a framework for further elucidation of the mechanistic details of metal toxicity and pathogenesis.


2021 ◽  
Author(s):  
Wouter Huiting ◽  
Alejandra Duque-Jaramillo ◽  
Renée Seinstra ◽  
Harm Kampinga ◽  
Ellen Nollen ◽  
...  

To maintain genome integrity, cells rely on a complex system of DNA repair pathways and cell cycle checkpoints, together referred to as the DNA damage response (DDR). Impairments in DDR pathways are linked to cancer, but also to a wide range of degenerative processes, frequently including progressive neuropathy and accelerated aging. How defects in mechanistically distinct DDR pathways can drive similar degenerative phenotypes is not understood. Here we show that defects in various DDR components are linked to a loss of protein homeostasis in Caenorhabditis elegans. Prolonged silencing of atm-1, brc-1 or ung-1, central components in respectively checkpoint signaling, double strand break repair and base excision repair enhances the global aggregation of proteins occurring in adult animals, and accelerates polyglutamine protein aggregation in a model for neurodegenerative diseases. Overexpression of the molecular chaperone HSP-16.2 prevents enhanced protein aggregation in atm-1, brc-1 or ung-1-compromised animals. Strikingly, rebalancing protein homeostasis with HSP-16.2 almost completely rescues age-associated impaired motor function in these animals as well. This reveals that the consequences of a loss of atm-1, brc-1 or ung-1 converge on an impaired protein homeostasis to cause degeneration. These findings indicate that a loss of protein homeostasis is a crucial downstream consequence of DNA repair defects, and thereby provide an attractive novel framework for understanding the broad link between DDR defects and degenerative processes.


iScience ◽  
2020 ◽  
Vol 23 (3) ◽  
pp. 100934 ◽  
Author(s):  
Rishika Kundra ◽  
Christopher M. Dobson ◽  
Michele Vendruscolo

Sign in / Sign up

Export Citation Format

Share Document