scholarly journals Pb(II) removal using carbon adsorbents prepared by hybrid heating system: Understanding the microwave heating by dielectric characterization and numerical simulation

2019 ◽  
Vol 277 ◽  
pp. 663-671 ◽  
Author(s):  
Gabriela Durán-Jiménez ◽  
Virginia Hernández-Montoya ◽  
Jose Rodríguez Oyarzun ◽  
Miguel Ángel Montes-Morán ◽  
Eleanor Binner
Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2473
Author(s):  
Yujiang He ◽  
Xianbiao Bu

The energy reserves in hot dry rock and hydrothermal systems are abundant in China, however, the developed resources are far below the potential estimates due to immature technology of enhanced geothermal system (EGS) and scattered resources of hydrothermal systems. To circumvent these problems and reduce the thermal resistance of rocks, here a shallow depth enhanced geothermal system (SDEGS) is proposed, which can be implemented by fracturing the hydrothermal system. We find that, the service life for SDEGS is 14 years with heat output of 4521.1 kW. To extend service life, the hybrid SDEGS and solar energy heating system is proposed with 10,000 m2 solar collectors installed to store heat into geothermal reservoir. The service life of the hybrid heating system is 35 years with geothermal heat output of 4653.78 kW. The novelty of the present work is that the hybrid heating system can solve the unstable and discontinuous problems of solar energy without building additional back-up sources or seasonal storage equipment, and the geothermal thermal output can be adjusted easily to meet the demand of building thermal loads varying with outside temperature.


2020 ◽  
Vol 39 (1) ◽  
pp. 54-62
Author(s):  
Hua Chen ◽  
Junjiang Chen ◽  
Weijun Wang ◽  
Huan Lin

AbstractThe multimode resonant cavity is the most common cavity. The material often shows on selective heating performance during the heating process due to the effect of microwave heating having a closely relationship with the electromagnetism parameters. This paper is based on finite difference time domain method (FDTD) to establish the electromagnetic-thermal model. The electromagnetic sensitivity property parameters of sodium chloride including relative dielectric constant, loss angle tangent and water content of sodium chloride is studied during the heating and drying process. The heating rate and the electric field distribution of sodium chloride, at the different water content, were simulated with the electromagnetic characteristic parameters changing. The results show that with the electromagnetic sensitivity property parameters varying, the electric field strength, heating rate and steady-state temperature of the heating material will all have a variety in the cavity. Some measures are proposed to improve the heating efficiency and ensure the stability of the microwave heating system in the industrial application.


2020 ◽  
Vol 9 (1) ◽  
pp. 119-130
Author(s):  
Kaihui Cui ◽  
Tianqi Liao ◽  
Chen Qiu ◽  
Hua Chen ◽  
Junwen Zhou

AbstractThis paper aims to investigate the heating behaviors of Y-TZP arrays under microwave irradiation. In this study, a three-dimensional numerical model of the microwave heating system was developed by COMSOL Multiphysics software. The numerical model was verified by microwave heating experiment, and the average root means square errors (RMSE) between the simulation and experimental data also confirmed the reliability of the model. The varying position and arrays of materials were applied to predict and visualize the three-dimensional distribution of the electromagnetic field and temperature during the microwave heating process. The results show that the temperature field distribution in microwave cavity was highly sensitive to the dielectric materials, the arrangement of the Y-TZP array interfered with the distribution of standing waves. The results can serve as references for the study to design and optimize the ceramic’s application in terms of microwave heating.


Sign in / Sign up

Export Citation Format

Share Document