High-efficiency and multiplex adenine base editing in plants using new TadA variants

2021 ◽  
Author(s):  
Daqi Yan ◽  
Bin Ren ◽  
Lang Liu ◽  
Fang Yan ◽  
Shaofang Li ◽  
...  
2018 ◽  
Vol 9 (9) ◽  
pp. 808-813 ◽  
Author(s):  
Puping Liang ◽  
Hongwei Sun ◽  
Xiya Zhang ◽  
Xiaowei Xie ◽  
Jinran Zhang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tanglong Yuan ◽  
Nana Yan ◽  
Tianyi Fei ◽  
Jitan Zheng ◽  
Juan Meng ◽  
...  

AbstractEfficient and precise base editors (BEs) for C-to-G transversion are highly desirable. However, the sequence context affecting editing outcome largely remains unclear. Here we report engineered C-to-G BEs of high efficiency and fidelity, with the sequence context predictable via machine-learning methods. By changing the species origin and relative position of uracil-DNA glycosylase and deaminase, together with codon optimization, we obtain optimized C-to-G BEs (OPTI-CGBEs) for efficient C-to-G transversion. The motif preference of OPTI-CGBEs for editing 100 endogenous sites is determined in HEK293T cells. Using a sgRNA library comprising 41,388 sequences, we develop a deep-learning model that accurately predicts the OPTI-CGBE editing outcome for targeted sites with specific sequence context. These OPTI-CGBEs are further shown to be capable of efficient base editing in mouse embryos for generating Tyr-edited offspring. Thus, these engineered CGBEs are useful for efficient and precise base editing, with outcome predictable based on sequence context of targeted sites.


2021 ◽  
Vol 4 (1) ◽  
pp. 69-81 ◽  
Author(s):  
Pin Lyu ◽  
Zuyan Lu ◽  
Sung-Ik Cho ◽  
Manish Yadav ◽  
Kyung Whan Yoo ◽  
...  
Keyword(s):  

2021 ◽  
Vol 4 (2) ◽  
pp. 178-190
Author(s):  
Andreas C. Eberherr ◽  
Andre Maaske ◽  
Christine Wolf ◽  
Florian Giesert ◽  
Riccardo Berutti ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Hye Kyung Lee ◽  
Harold E. Smith ◽  
Chengyu Liu ◽  
Michaela Willi ◽  
Lothar Hennighausen

AbstractDeaminase base editing has emerged as a tool to install or correct point mutations in the genomes of living cells in a wide range of organisms. However, the genome-wide off-target effects introduced by base editors in the mammalian genome have been examined in only one study. Here, we have investigated the fidelity of cytosine base editor 4 (BE4) and adenine base editors (ABE) in mouse embryos using unbiased whole-genome sequencing of a family-based trio cohort. The same sgRNA was used for BE4 and ABE. We demonstrate that BE4-edited mice carry an excess of single-nucleotide variants and deletions compared to ABE-edited mice and controls. Therefore, an optimization of cytosine base editors is required to improve its fidelity. While the remarkable fidelity of ABE has implications for a wide range of applications, the occurrence of rare aberrant C-to-T conversions at specific target sites needs to be addressed.


2019 ◽  
Vol 20 (12) ◽  
pp. 2888 ◽  
Author(s):  
Julia Jansing ◽  
Andreas Schiermeyer ◽  
Stefan Schillberg ◽  
Rainer Fischer ◽  
Luisa Bortesi

The advent of precise genome-editing tools has revolutionized the way we create new plant varieties. Three groups of tools are now available, classified according to their mechanism of action: Programmable sequence-specific nucleases, base-editing enzymes, and oligonucleotides. The corresponding techniques not only lead to different outcomes, but also have implications for the public acceptance and regulatory approval of genome-edited plants. Despite the high efficiency and precision of the tools, there are still major bottlenecks in the generation of new and improved varieties, including the efficient delivery of the genome-editing reagents, the selection of desired events, and the regeneration of intact plants. In this review, we evaluate current delivery and regeneration methods, discuss their suitability for important crop species, and consider the practical aspects of applying the different genome-editing techniques in agriculture.


Nature Plants ◽  
2018 ◽  
Vol 4 (9) ◽  
pp. 730-730
Author(s):  
Beum-Chang Kang ◽  
Jae-Young Yun ◽  
Sang-Tae Kim ◽  
YouJin Shin ◽  
Jahee Ryu ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuo Li ◽  
Bo Yuan ◽  
Jixin Cao ◽  
Jingqi Chen ◽  
Jinlong Chen ◽  
...  

AbstractBase editing tools with diversified editing scopes and minimized RNA off-target activities are required for broad applications. Nevertheless, current Streptococcus pyogenes Cas9 (SpCas9)-based adenine base editors (ABEs) with minimized RNA off-target activities display constrained editing scopes with efficient editing activities at positions 4-8. Here, functional ABE variants with diversified editing scopes and reduced RNA off-target activities are identified using domain insertion profiling inside SpCas9 and with different combinations of TadA variants. Engineered ABE variants in this study display narrowed, expanded or shifted editing scopes with efficient editing activities across protospacer positions 2-16. And when combined with deaminase engineering, the RNA off-target activities of engineered ABE variants are further minimized. Thus, domain insertion profiling provides a framework to improve and expand ABE toolkits, and its combination with other strategies for ABE engineering deserves comprehensive explorations in the future.


2020 ◽  
Author(s):  
Xi Xiang ◽  
Kunli Qu ◽  
Xue Liang ◽  
Xiaoguang Pan ◽  
Jun Wang ◽  
...  

AbstractThe CRISPR RNA-guided endonucleases Cas9, and Cas9-derived adenine/cytosine base editors (ABE/CBE), have been used in both research and therapeutic applications. However, broader use of this gene editing toolbox is hampered by the great variability of efficiency among different target sites. Here we present TRAP-seq, a versatile and scalable approach in which the CRISPR gRNA expression cassette and the corresponding surrogate site are captured by Targeted Reporter Anchored Positional Sequencing in cells. TRAP-seq can faithfully recapitulate the CRISPR gene editing outcomes introduced to the corresponding endogenous genome site and most importantly enables massively parallel quantification of CRISPR gene editing in cells. We demonstrate the utility of this technology for high-throughput quantification of SpCas9 editing efficiency and indel outcomes for 12,000 gRNAs in human embryonic kidney cells. Using this approach, we also showed that TRAP-seq enables high throughput quantification of both ABE and CBE efficiency at 12,000 sites in cells. This rich amount of ABE/CBE outcome data enable us to reveal several novel nucleotide features (e.g. preference of flanking bases, nucleotide motifs, STOP recoding types) affecting base editing efficiency, as well as designing improved machine learning-based prediction tools for designing SpCas9, ABE and CBE gRNAs of high efficiency and accuracy (>70%). We have integrated all the 12,000 CRISPR gene editing outcomes for SpCas9, ABE and CBE into a CRISPR-centered portal: The Human CRISPR Atlas. This study extends our knowledge on CRISPR gene and base editing, and will facilitate the application and development of CRISPR in both research and therapy.


Sign in / Sign up

Export Citation Format

Share Document