Inclusion complexation of chloroquine with α and β-cyclodextrin: Theoretical insights from the new B97-3c composite method

2021 ◽  
Vol 1227 ◽  
pp. 129696
Author(s):  
Ibtissem Meriem Assaba ◽  
Seyfeddine Rahali ◽  
Youghourta Belhocine ◽  
Hamza Allal
Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 136
Author(s):  
Masahiko Terauchi ◽  
Atsushi Tamura ◽  
Yoshinori Arisaka ◽  
Hiroki Masuda ◽  
Tetsuya Yoda ◽  
...  

Oral tissue regeneration has received growing attention for improving the quality of life of patients. Regeneration of oral tissues such as alveolar bone and widely defected bone has been extensively investigated, including regenerative treatment of oral tissues using therapeutic cells and growth factors. Additionally, small-molecule drugs that promote bone formation have been identified and tested as new regenerative treatment. However, treatments need to progress to realize successful regeneration of oral functions. In this review, we describe recent progress in development of regenerative treatment of oral tissues. In particular, we focus on cyclodextrin (CD)-based pharmaceutics and polyelectrolyte complexation of growth factors to enhance their solubility, stability, and bioactivity. CDs can encapsulate hydrophobic small-molecule drugs into their cavities, resulting in inclusion complexes. The inclusion complexation of osteoinductive small-molecule drugs improves solubility of the drugs in aqueous solutions and increases in vitro osteogenic differentiation efficiency. Additionally, various anionic polymers such as heparin and its mimetic polymers have been developed to improve stability and bioactivity of growth factors. These polymers protect growth factors from deactivation and degradation by complex formation through electrostatic interaction, leading to potentiation of bone formation ability. These approaches using an inclusion complex and polyelectrolyte complexes have great potential in the regeneration of oral tissues.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3574
Author(s):  
Thammarat Aree

Protocatechuic aldehyde (PCAL) and protocatechuic acid (PCAC) are catechol derivatives and have broad therapeutic effects associated with their antiradical activity. Their pharmacological and physicochemical properties have been improved via the cyclodextrin (CD) encapsulation. Because the characteristics of b-CD inclusion complexes with PCAL (1) and PCAC (2) are still equivocal, we get to the bottom of the inclusion complexation by an integrated study of single-crystal X-ray diffraction and DFT full-geometry optimization. X-ray analysis unveiled that PCAL and PCAC are nearly totally shielded in the b-CD wall. Their aromatic rings are vertically aligned in the b-CD cavity such that the functional groups on the opposite side of the ring (3,4-di(OH) and 1-CHO/1-COOH groups) are placed nearby the O6–H and O2–H/O3–H rims, respectively. The preferred inclusion modes in 1 and 2 help to establish crystal contacts of OH×××O H-bonds with the adjacent b-CD OH groups and water molecules. By contrast, the DFT-optimized structures of both complexes in the gas phase are thermodynamically stable via the four newly formed host–guest OH⋯O H-bonds. The intermolecular OH×××O H-bonds between PCAL/PCAC 3,4-di(OH) and b-CD O6–H groups, and the shielding of OH groups in the b-CD wall help to stabilize these antioxidants in the b-CD cavity, as observed in our earlier studies. Moreover, PCAL and PCAC in distinct lattice environments are compared for insights into their structural flexibility.


2010 ◽  
Vol 69 (1-2) ◽  
pp. 149-155 ◽  
Author(s):  
Daniel Leite Silva ◽  
Eder Couto Tavares ◽  
Leila Souza Conegero ◽  
Ângelo Fátima ◽  
Ronaldo Aloise Pilli ◽  
...  

2013 ◽  
Vol 69 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Sakthivel Pitchaimuthu ◽  
Ponnusamy Velusamy

An attempt has been made to enhance the photocatalytic activity of CeO2 for visible light assisted decoloration of methylene blue (MB) dye in aqueous solutions by β-cyclodextrin (β-CD). The inclusion complexation patterns between host and guest (i.e., β-CD and MB) have been confirmed with UV–visible spectral data. The interaction between CeO2 and β-CD has also been characterized by field emission scanning electron microscopy analysis. The photocatalytic activity of the catalyst under visible light was investigated by measuring the photodegradation of MB in aqueous solution. The effects of key operational parameters such as initial dye concentration, initial pH, CeO2 concentration as well as illumination time on the decolorization extents were investigated. Among the processing parameters, the pH of the reaction solution played an important role in tuning the photocatalytic activity of CeO2. The maximum photodecoloration rate was achieved at basic pH (pH 11). Under the optimum operational conditions, approximately 99.6% dye removal was achieved within 120 min. The observed results indicate that the decolorization of the MB followed a pseudo-first order kinetics.


1978 ◽  
Vol 26 (4) ◽  
pp. 1162-1167 ◽  
Author(s):  
KANETO UEKAMA ◽  
FUMITOSHI HIRAYAMA ◽  
MASAKI OTAGIRI ◽  
YOUKO OTAGIRI ◽  
KEN IKEDA

2015 ◽  
Vol 54 (31) ◽  
pp. 9364 ◽  
Author(s):  
Zexin Feng ◽  
Brittany D. Froese ◽  
Rongguang Liang

Author(s):  
wu Hao ◽  
Yang Jun ◽  
Zong Fang Ke ◽  
Luo Kun Hao ◽  
Zhen Jing Biao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document