Microstructural features assessment of different waterlogged wood species by NMR diffusion validated with complementary techniques

Author(s):  
V. Stagno ◽  
F. Egizi ◽  
F. Corticelli ◽  
V. Morandi ◽  
F. Valle ◽  
...  
Author(s):  
David A. Agard ◽  
Yasushi Hiraoka ◽  
John W. Sedat

In an effort to understand the complex relationship between structure and biological function within the nucleus, we have embarked on a program to examine the three-dimensional structure and organization of Drosophila melanogaster embryonic chromosomes. Our overall goal is to determine how DNA and proteins are organized into complex and highly dynamic structures (chromosomes) and how these chromosomes are arranged in three dimensional space within the cell nucleus. Futher, we hope to be able to correlate structual data with such fundamental biological properties as stage in the mitotic cell cycle, developmental state and transcription at specific gene loci.Towards this end, we have been developing methodologies for the three-dimensional analysis of non-crystalline biological specimens using optical and electron microscopy. We feel that the combination of these two complementary techniques allows an unprecedented look at the structural organization of cellular components ranging in size from 100A to 100 microns.


1975 ◽  
Vol 33 (02) ◽  
pp. 256-270
Author(s):  
R. M Howell ◽  
S. L. M Deacon

SummaryElectron microscopy and particle electrophoresis were found to be complementary techniques with which to complete the physical data from an earlier study on barium sulphates used to adsorb clotting factors from serum. The differences revealed by scanning electron microscopy (S. E. M.) in the physical shape of low and high density grades of barium sulphate particles appear to be of greater significance than charge as expressed by electrophoretic mobility, in determining whether or not precursor or preformed factor Xa is eluted.This conclusion was based on the finding that at pH values close to 7, where the adsorption from serum occurs, all samples with the exception of natural barytes were uncharged. However as the high-density, or soil-grade, was found by S. E. M. to consist of large solid crystals it was suggested that this shape might induce activation of factor X as a result of partial denaturation and consequent unfolding of the adsorbed protein. In contrast, uptake of protein into the centre of the porous aggregates revealed by S. E. M. pictures of low-density or X-ray grade barium sulphate may afford protection against denaturation and exposure of the enzyme site.The porous nature of particles of low-density barium sulphate compared with the solid crystalline forms of other grades accounts not only for its lower bulk density but also for its greater surface/gram ratio which is reflected by an ability to adsorb more protein from serum.Neither technique produced evidence from any of the samples to indicate the presence of stabilising agents sometimes used to coat particles in barium meals.


2020 ◽  
Vol 9 (4) ◽  
pp. e31942727
Author(s):  
João Gabriel Missia da Silva ◽  
Pedro Nicó de Medeiros ◽  
Denise Ransolin Soranso ◽  
Vinicius Peixoto Tinti ◽  
José Tarcísio da Silva Oliveira ◽  
...  

The aim of this study was to evaluate the influence of anatomical characteristics on the adhesion performance of Vatairea sp., Paulownia sp., Aspidosperma populifolium and Tectona grandis wood. Specimens for anatomical, physical and mechanical analyzes were produced from tangentially oriented boards. The treatments were joint glued from pieces of the same anatomical orientation (radial and tangential), evaluated for shear strength and glue line failure. The Vatairea sp wood had the highest specific gravity (0.74 g cm-3) and the Paulownia sp (0.34 g cm-3) wood was smaller. Aspidosperma populifolium species showed the highest shear strength in the glue line in the tangential and radial faces. The anatomical variables with higher influence on the wood adhesion process were pith ray cells and especially fibers that exhibit the greatest correlation with the shear strength of the glue line.


2019 ◽  
Author(s):  
HanByul Chang ◽  
Paul Ohno ◽  
Yangdongling Liu ◽  
Franz Geiger

We report the detection of charge reversal induced by the adsorption of a cationic polyelectrolyte, poly(allylamine) hydrochloride (PAH), to buried supported lipid bilayers (SLBs), used as idealized model biological membranes. We observe changes in the surface potential in isolation from other contributors to the total SHG response by extracting the phase-shifted potential-dependent third-order susceptibility from the overall SHG signal. We demonstrate the utility of this technique in detecting both the sign of the surface potential and the point of charge reversal at buried interfaces without any prior information or complementary techniques<i>.</i>Furthermore, isolation of the second-order susceptibility contribution from the overall SHG response allows us to directly monitor changes in the Stern Layer. Finally, we characterize the Stern and Diffuse Layers over single-component SLBs formed from three different zwitterionic lipids of different gel-to-fluid phase transition temperatures (T<sub>m</sub>s). We determine whether the surface potential changes with the physical phase state (gel, transitioning, or fluid) of the SLB and incorporate 20 percent of negatively charged lipids to the zwitterionic SLB to investigate how the surface potential changes with surface charge.


Author(s):  
M.L. Anderson ◽  
P. Tangyunyong ◽  
T.A. Hill ◽  
C.Y. Nakakura ◽  
T.J. Headley ◽  
...  

Abstract By combining transmission electron microscopy (TEM) [1] with scanning capacitance microscopy (SCM) [2], it is possible to enhance our understanding of device failures. At Sandia, these complementary techniques have been utilized for failure analysis in new product development, process validation, and yield enhancement, providing unique information that cannot be obtained with other analytical tools. We have previously used these instruments to identify the root causes of several yield-limiting defects in CMOS device product lines [3]. In this paper, we describe in detail the use of these techniques to identify electrically active silicon dislocations in failed SRAMs and to study the underlying leakage mechanisms associated with these defects.


Author(s):  
Nurida Finahari

The art of chisel mask is developed in Tumpang Malang area as part of dance costume fairs, puppet show andcultural ritual, although in its development, this mask sculpture is also sold and become a tourism commodity. The potentialsales of mask sculptures is increasing, especially because of the demanders are foreign tourists, cultural enthusiasts andcomponent of tourism activities. That is, Topeng Malangan has the potential to be developed as an export commodity. Thesales system is still limited to cultural events or when there is a visit of education and tourism to the arts-padepokan. Thisprompted some people around the padepokan to start a home industry to meet the availability of the mask. In general, theproblems encountered by the craftsmen are (1) availability of raw materials, especially for suitable wood species, (2)production equipment, especially for pre-carving process and preservation of product, (3) there is no standard marketingscheme, (4) does not have a business management system, and (5) highly skilled craftsmen are still very limited. The solutionsoffered are divided into three stages: (1) technological strengthening, including strengthening production process technologyand increasing the number of craftsmen; (2) establishing business management; and (3) establishing trademarks, copyrightsand product marketing expansions


2020 ◽  
Vol 52 (1) ◽  
pp. 28-43 ◽  
Author(s):  
Wei Xu ◽  
Xiaoyang Fang ◽  
Jiatong Han ◽  
Zhihui Wu ◽  
Jilei Zhang

2020 ◽  
Vol 11 (1) ◽  
pp. 44
Author(s):  
Sergej Medved ◽  
Daša Krapež Tomec ◽  
Angela Balzano ◽  
Maks Merela

Since invasive alien species are one of the main causes of biodiversity loss in the region and thus of changes in ecosystem services, it is important to find the best possible solution for their removal from nature and the best practice for their usability. The aim of the study was to investigate their properties as components of wood-plastic composites and to investigate the properties of the wood-plastic composites produced. The overall objective was to test the potential of available alien plant species as raw material for the manufacture of products. This would contribute to sustainability and give them a better chance of ending their life cycle. One of the possible solutions on a large scale is to use alien wood species for the production of wood plastic composites (WPC). Five invasive alien hardwood species have been used in combination with polyethylene powder (PE) and maleic anhydride grafted polyethylene (MAPE) to produce various flat pressed WPC boards. Microstructural analyses (confocal laser scanning microscopy and scanning electron microscopy) and mechanical tests (flexural strength, tensile strength) were performed. Furthermore, measurements of density, thickness swelling, water absorption and dimensional stability during heating and cooling were carried out. Comparisons were made between the properties of six WPC boards (five alien wood species and mixed boards). The results showed that the differences between different invasive alien wood species were less obvious in mechanical properties, while the differences in sorption properties and dimensional stability were more significant. The analyses of the WPC structure showed a good penetration of the polymer into the lumens of the wood cells and a fine internal structure without voids. These are crucial conditions to obtain a good, mechanically strong and water-resistant material.


Author(s):  
Joielan Xipaia dos Santos ◽  
Helena Cristina Vieira ◽  
Tawani Lorena Naide ◽  
Deivison Venicio Souza ◽  
Graciela Inés Bolzon de Muñiz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document