The determination of the local conditions for void initiation in front of a crack tip for materials with second-phase particles

2005 ◽  
Vol 393 (1-2) ◽  
pp. 275-285 ◽  
Author(s):  
I. Sabirov ◽  
D. Duschlbauer ◽  
H.E. Pettermann ◽  
O. Kolednik
Author(s):  
C.T. Hu ◽  
C.W. Allen

One important problem in determination of precipitate particle size is the effect of preferential thinning during TEM specimen preparation. Figure 1a schematically represents the original polydispersed Ni3Al precipitates in the Ni rich matrix. The three possible type surface profiles of TEM specimens, which result after electrolytic thinning process are illustrated in Figure 1b. c. & d. These various surface profiles could be produced by using different polishing electrolytes and conditions (i.e. temperature and electric current). The matrix-preferential-etching process causes the matrix material to be attacked much more rapidly than the second phase particles. Figure 1b indicated the result. The nonpreferential and precipitate-preferential-etching results are shown in Figures 1c and 1d respectively.


2013 ◽  
Vol 765 ◽  
pp. 451-455 ◽  
Author(s):  
Liam Dwyer ◽  
Joseph Robson ◽  
Joao Quinta da Fonseca ◽  
Nicolas Kamp ◽  
Teruo Hashimoto ◽  
...  

Second phase particles in wrought aluminium alloys are crucial in controlling recrystallization and texture. In Al-Mn-Fe-Si (3xxx) alloys, the size, spacing, and distribution of both large constituent particles and small dispersoids are manipulated by heat treatment to obtain the required final microstructure and texture for operations such as can-making. Understanding how these particles evolve as a function of process conditions is thus critical to optimize alloy performance. In this study, a novel 3-dimensional technique involving serial sectioning in the scanning electron microscope (SEM) has been used to analyse the intermetallic particles found in an as-cast and homogenized Al-Mn-Fe-Si alloy. This has allowed an accurate determination of the size and shape of the constituent particles and dispersoids derived from a 3-dimensional dataset. It is demonstrated that a proper consideration of the 3-dimensional microstructure reveals important features that are not obvious from 2-dimensional sections alone.


2019 ◽  
Vol 784 ◽  
pp. 68-75 ◽  
Author(s):  
Xinyue Lan ◽  
Kai Li ◽  
Fuxin Wang ◽  
Yanqing Su ◽  
Mingjun Yang ◽  
...  

Author(s):  
Zülal Misirli ◽  
Burhanettin S. Altan ◽  
Hüseyin Yörücü

The modifications of the properties of composite materials by controlling the ratio, size, shape, orientation and spatial distribution of the second phase particles is a well known phenomena. Although there are technique available for the quantifying of most of these parameters, there is no established technique for the determination of the spatial homogeneity; yet this property is also highly influental on the behavior of the material. The aim of this paper is to introduce a fully automated technique to determine the spatial homogeneity of second phase particles.The technique presented in this paper was based on the technique reported by Eisenkolb and Lange and Hirlinger. In this technique the image area was divided by a grid having equal size squares (Fig.1). In a homogeneous mixture the proportion of the second phase would be the same in each square. However, because of the finite size and the agglomeration of particles, the proportion of the second phase varies. This variation is best represented by Relative Standard Deviation, Srel, which is defined as the standard deviation divided by the average. As finer grid sizes are used Srel would naturally increase. It was assumed that for a random dispersion Srel increases linearly as the size of the grid squares becomes smaller. In this study it was shown mathematically that this increase becomes faster when agglomerations are present.


Author(s):  
C. H. Carter ◽  
J. E. Lane ◽  
J. Bentley ◽  
R. F. Davis

Silicon carbide (SiC) is the generic name for a material which is produced and fabricated by a number of processing routes. One of the three SiC materials investigated at NCSU is Norton Company's NC-430, which is produced by reaction-bonding of Si vapor with a porous SiC host which also contains free C. The Si combines with the free C to form additional SiC and a second phase of free Si. Chemical vapor deposition (CVD) of CH3SiCI3 onto a graphite substrate was employed to produce the second SiC investigated. This process yielded a theoretically dense polycrystalline material with highly oriented grains. The third SiC was a pressureless sintered material (SOHIO Hexoloy) which contains B and excess C as sintering additives. These materials are candidates for applications such as components for gas turbine, adiabatic diesel and sterling engines, recouperators and heat exchangers.


Author(s):  
M. Raghavan ◽  
J. Y. Koo ◽  
J. W. Steeds ◽  
B. K. Park

X-ray microanalysis and Convergent Beam Electron Diffraction (CBD) studies were conducted to characterize the second phase particles in two commercial aluminum alloys -- 7075 and 7475. The second phase particles studied were large (approximately 2-5μm) constituent phases and relatively fine ( ∼ 0.05-1μn) dispersoid particles, Figures 1A and B. Based on the crystal structure and chemical composition analyses, the constituent phases found in these alloys were identified to be Al7Cu2Fe, (Al,Cu)6(Fe,Cu), α-Al12Fe3Si, Mg2Si, amorphous silicon oxide and the modified 6Fe compounds, in decreasing order of abundance. The results of quantitative X-ray microanalysis of all the constituent phases are listed in Table I. The data show that, in almost all the phases, partial substitution of alloying elements occurred resulting in small deviations from the published stoichiometric compositions of the binary and ternary compounds.


Author(s):  
D. Goyal ◽  
A. H. King

TEM images of cracks have been found to give rise to a moiré fringe type of contrast. It is apparent that the moire fringe contrast is observed because of the presence of a fault in a perfect crystal, and is characteristic of the fault geometry and the diffracting conditions in the TEM. Various studies have reported that the moire fringe contrast observed due to the presence of a crack in an otherwise perfect crystal is distinctive of the mode of crack. This paper describes a technique to study the geometry and mode of the cracks by comparing the images they produce in the TEM because of the effect that their displacement fields have on the diffraction of electrons by the crystal (containing a crack) with the corresponding theoretical images. In order to formulate a means of matching experimental images with theoretical ones, displacement fields of dislocations present (if any) in the vicinity of the crack are not considered, only the effect of the displacement field of the crack is considered.The theoretical images are obtained using a computer program based on the two beam approximation of the dynamical theory of diffraction contrast for an imperfect crystal. The procedures for the determination of the various parameters involved in these computations have been well documented. There are three basic modes of crack. Preliminary studies were carried out considering the simplest form of crack geometries, i. e., mode I, II, III and the mixed modes, with orthogonal crack geometries. It was found that the contrast obtained from each mode is very distinct. The effect of variation of operating conditions such as diffracting vector (), the deviation parameter (ω), the electron beam direction () and the displacement vector were studied. It has been found that any small change in the above parameters can result in a drastic change in the contrast. The most important parameter for the matching of the theoretical and the experimental images was found to be the determination of the geometry of the crack under consideration. In order to be able to simulate the crack image shown in Figure 1, the crack geometry was modified from a orthogonal geometry to one with a crack tip inclined to the original crack front. The variation in the crack tip direction resulted in the variation of the displacement vector also. Figure 1 is a cross-sectional micrograph of a silicon wafer with a chromium film on top, showing a crack in the silicon.


Sign in / Sign up

Export Citation Format

Share Document