Grain size, grain boundary sliding, and grain boundary interaction effects on nanocrystalline behavior

2009 ◽  
Vol 520 (1-2) ◽  
pp. 121-133 ◽  
Author(s):  
J. Shi ◽  
M.A. Zikry
2021 ◽  
Vol 15 (9) ◽  
pp. 4589-4605
Author(s):  
Mark D. Behn ◽  
David L. Goldsby ◽  
Greg Hirth

Abstract. Viscous flow in ice is often described by the Glen flow law – a non-Newtonian, power-law relationship between stress and strain rate with a stress exponent n ∼ 3. The Glen law is attributed to grain-size-insensitive dislocation creep; however, laboratory and field studies demonstrate that deformation in ice can be strongly dependent on grain size. This has led to the hypothesis that at sufficiently low stresses, ice flow is controlled by grain boundary sliding, which explicitly incorporates the grain size dependence of ice rheology. Experimental studies find that neither dislocation creep (n ∼ 4) nor grain boundary sliding (n ∼ 1.8) have stress exponents that match the value of n ∼ 3 in the Glen law. Thus, although the Glen law provides an approximate description of ice flow in glaciers and ice sheets, its functional form is not explained by a single deformation mechanism. Here we seek to understand the origin of the n ∼ 3 dependence of the Glen law by using the “wattmeter” to model grain size evolution in ice. The wattmeter posits that grain size is controlled by a balance between the mechanical work required for grain growth and dynamic grain size reduction. Using the wattmeter, we calculate grain size evolution in two end-member cases: (1) a 1-D shear zone and (2) as a function of depth within an ice sheet. Calculated grain sizes match both laboratory data and ice core observations for the interior of ice sheets. Finally, we show that variations in grain size with deformation conditions result in an effective stress exponent intermediate between grain boundary sliding and dislocation creep, which is consistent with a value of n = 3 ± 0.5 over the range of strain rates found in most natural systems.


2001 ◽  
Author(s):  
J. Narayan ◽  
H. Wang ◽  
A. Kvit

Abstract We have synthesized nanocrystalline thin films of Cu, Zn, TiN, and WC having uniform grain size in the range of 5 to 100 nm. This was accomplished by introducing a couple of manolayers of materials with high surface and have a weak interaction with the substrate. The hardness measurements of these well-characterized specimens with controlled microstructures show that hardness initially increases with decreasing grain size following the well-known Hall-Petch relationship (H∝d−½). However, there is a critical grain size below which the hardness decreases with decreasing grain size. The experimental evidence for this softening of nanocrystalline materials at very small grain sizes (referred as reverse Hall-Petch effect) is presented for the first time. Most of the plastic deformation in our model is envisioned to be due to a large number of small “sliding events” associated with grain boundary shear or grain boundary sliding. This grain-size dependence of hardness can be used to create functionally gradient materials for improved adhesion and wear among other improved properties.


Solid Earth ◽  
2017 ◽  
Vol 8 (6) ◽  
pp. 1193-1209 ◽  
Author(s):  
James Gilgannon ◽  
Florian Fusseis ◽  
Luca Menegon ◽  
Klaus Regenauer-Lieb ◽  
Jim Buckman

Abstract. Establishing models for the formation of well-mixed polyphase domains in ultramylonites is difficult because the effects of large strains and thermo-hydro-chemo-mechanical feedbacks can obscure the transient phenomena that may be responsible for domain production. We use scanning electron microscopy and nanotomography to offer critical insights into how the microstructure of a highly deformed quartzo-feldspathic ultramylonite evolved. The dispersal of monomineralic quartz domains in the ultramylonite is interpreted to be the result of the emergence of synkinematic pores, called creep cavities. The cavities can be considered the product of two distinct mechanisms that formed hierarchically: Zener–Stroh cracking and viscous grain-boundary sliding. In initially thick and coherent quartz ribbons deforming by grain-size-insensitive creep, cavities were generated by the Zener–Stroh mechanism on grain boundaries aligned with the YZ plane of finite strain. The opening of creep cavities promoted the ingress of fluids to sites of low stress. The local addition of a fluid lowered the adhesion and cohesion of grain boundaries and promoted viscous grain-boundary sliding. With the increased contribution of viscous grain-boundary sliding, a second population of cavities formed to accommodate strain incompatibilities. Ultimately, the emergence of creep cavities is interpreted to be responsible for the transition of quartz domains from a grain-size-insensitive to a grain-size-sensitive rheology.


2020 ◽  
Author(s):  
John Wheeler ◽  
Lynn Evans ◽  
Robyn Gardner ◽  
Sandra Piazolo

<p>Diffusion creep and the wet low temperature version, pressure solution, are major deformation mechanisms in the Earth. Pressure solution operates in many metamorphosing systems in the crust and may contribute to slow creep on fault surfaces. Diffusion creep prevails in areas of the upper mantle deforming slowly, and possibly in most of the lower mantle. Both mechanisms contribute to localisation since small grain sizes can deform faster.</p><p>However, there has been limited attention paid to the evolution of microstructure during diffusion creep. In some experiments grains coarsen; in some but not all experiments grains remain rather equant. We have developed a grain-scale numerical model for diffusion creep, which indicates that those processes are very important in influencing evolving strength. Our models illustrate three behaviours.</p><ol><li>Strain localises along slip surfaces formed by aligned grain boundaries on all scales. This affects overall strength.</li> <li>Diffusion creep is predicted to produce elongate grains and then the overall aggregate has intense mechanical anisotropy. Thus strength during diffusion creep, and localisation on weak zones, is influenced not just by grain size but by other aspects of microstructure.</li> <li>Grain coarsening increases grain size and strength. Our most recent work shows how it interacts with ongoing deformation. In particular grain growth can lead to particular grain shapes which are directly related to strain rate, and influence strength. Consequently, understanding localisation during diffusion creep must encompass the effects of diffusion itself, grain boundary sliding and grain coarsening.</li> </ol>


2010 ◽  
Vol 654-656 ◽  
pp. 607-610 ◽  
Author(s):  
Koji Hagihara ◽  
Akihito Kinoshita ◽  
Yuya Sugino ◽  
Michiaki Yamasaki ◽  
Yoshihito Kawamura ◽  
...  

Deformation mechanisms of Mg89Zn4Y7 (at.%) extruded alloy, which is mostly composed of LPSO-phase, was investigated focusing on their temperature dependence. The yield stress of as-extruded alloy showed extremely high value of ~480 MPa at RT, but it largely decreased to ~130 MPa at 300 °C. The decreasing rate of the yield stress could be significantly reduced, however, by the annealing of specimen at 400 °C, by suppressing the microyielding which is considered to occur related by the grain boundary sliding in restricted regions. The yield stress of the annealed specimens with random textures could be estimated by the Hall-Petch relationship by regarding the length of long-axis of plate-like grains as a grain size between RT and 300 °C. The yield stress of the annealed specimens maintained high values even at 200°C, but it also showed large decreases at 300 °C.


2007 ◽  
Vol 345-346 ◽  
pp. 565-568
Author(s):  
Byung Nam Kim ◽  
Keijiro Hiraga ◽  
Koji Morita ◽  
Hidehiro Yoshida

For steady-state deformation caused by grain-boundary diffusion and viscous grain-boundary sliding, the creep rate of regular polyhedral grains is analyzed by the energy-balance method. For the microstructure, the grain-grain interaction increases the degree of symmetry of diffusional field, resulting in a decrease of the effective diffusion distance. Meanwhile, the viscous grain-boundary sliding is found to decrease the creep rate. The present analysis reveals that the grain-size exponent is dependent on the grain size and the grain-boundary viscosity: the exponent becomes unity for small grain sizes and/or high viscosity, while it is three for large grain sizes and/or low viscosity.


Fractals ◽  
2001 ◽  
Vol 09 (02) ◽  
pp. 223-230 ◽  
Author(s):  
MANABU TANAKA ◽  
RYUICHI KATO ◽  
ATSUSHI KAYAMA

A computer simulation using a multicrack growth model was carried out on the growth and linkage of cracks and the formation of creep fracture pattern resulting from the initial defects. The percolated crack patterns and the number of steps to percolation were examined by Monte Carlo simulation on a square lattice. Effects of stress and grain size on creep fracture process are then discussed. The stress and grain size dependence of the number of steps to percolation in the simulation was similar to that of grain-boundary sliding in the austenitic 21Cr-4Ni-9Mn heat-resisting steel, which controlled the growth of grain-boundary cracks. The fractal dimension of the percolation crack was also correlated with that of the creep fracture pattern in the 21Cr-4Ni-9Mn steel.


2012 ◽  
Vol 18-19 ◽  
pp. 27-42 ◽  
Author(s):  
Reza Jafari Nedoushan ◽  
Mahmoud Farzin

One of the Remarkable Differences between Mechanical Behavior of Nano-Crystalline and Coarse-Grained Materials Is Tension Compression Asymmetry that Has Been Experienced in Nano-Crystalline Materials. In this Paper a Constitutive Model Is Proposed which Considers Dominant Operative Deformation Mechanisms of Nano-Crystalline Materials Including Grain Interior Plasticity, Grain Boundary Diffusion and Grain Boundary Sliding. A Grain Size Dependent Taylor Type Polycrystalline Model Is Used to Predict Grain Interior Deformation. Three Dimensional Relationships Are Proposed to Relate Macro Stress and Strain Rate in Grain Boundary Mechanisms. The Effect of Normal Stress Acting on a Boundary Is Also Considered in Grain Boundary Sliding, Therefore, Effect of Hydrostatic Pressure Is Included in the Model. The Proposed Model Is Used to Predict Strength of Nano-Crystalline Copper in both Tension and Compression and Good Results Are Obtained Comparing with Experimental Data. The Model Also Predicts Various Behaviors of Nano-Crystalline Materials Observed in Literature's Experiments and Molecular Dynamic Simulations. Some Examples Are: Inverse Hall-Petch Effect; Tension and Compression Maximum Strength Grain Sizes; Tension Compression Asymmetry and its Change Vs. Grain Size and Strain Rate and the Yield Locus Shape.


1998 ◽  
Vol 540 ◽  
Author(s):  
S. Tähtinen ◽  
M. Pyykkönen ◽  
S. Smuk ◽  
H. Hänninen ◽  
Y. Jagodzinski ◽  
...  

AbstractFracture toughness was found to decrease rapidly with increasing temperature in dispersionstrengthened GlidCop®Al-25 copper alloy both in the as-supplied condition and neutron irradiated to a dose of 0.3 dpa. Internal friction study revealed two-component peak. Grain-boundary sliding was recognized to be responsible for the low-temperature component of the peak, which disappears after irradiation and restores after the heating above 900 K. This points out that the changes in the particle — grain boundary interaction, apparently, due to the defects at the interfaces produced by irradiation are responsible for the drop of fracture toughness in A125 alloy.


Sign in / Sign up

Export Citation Format

Share Document