Fast, micrometer scale characterization of group-III nitrides with laboratory X-ray diffraction

2009 ◽  
Vol 524 (1-2) ◽  
pp. 82-88 ◽  
Author(s):  
Alois Krost ◽  
Jürgen Bläsing
1984 ◽  
Vol 43 ◽  
Author(s):  
Gregory J. McCarthy ◽  
Lindsay P. Keller ◽  
Robert J. Stevenson ◽  
Kevin C. Galbreath ◽  
Aaron L. Steinwand

AbstractUtilization or disposal of gasification ash requires detailed characterization of its chemistry and phase formation (mineralogy). A North Dakota lignite ash produced in the Morgantown Energy Technology Center (METC) gasifier has been studied in detail by x-ray diffraction and electron microprobe analysis. The ash was coarse (84% of grains larger than 1.0 mm) but a typical grain was composed of a dozen or more crystalline phases with dimensions on the micrometer scale as well as less abundant glass phases. Hard centimeter-size clinkers suggested partial melting followed by crystallization. Silicates (dicalcium silicates (C2S), merwinite, Ca-Na-silicate (CNS), quartz), aluminosilicates (melilite, nepheline, carnegieite), oxides (ferrite spinels, periclase, hematite), calcite and minor zeolites comprised the dominant mineralogy. Microprobe analyses were obtained for large numbers of grains of the C2S phases, CNS, merwinite, melilite, ferrite spinels and calcite. The remaining phases had crystal sizes too small for analysis. A model is proposed for the genesis of this ash based on the inorganic constituents of lignite and the gasifier operating conditions.


2001 ◽  
Vol 3 (3) ◽  
pp. 111-121 ◽  
Author(s):  
Aldo Mele ◽  
Anna Giardini ◽  
Tonia M. Di Palma ◽  
Chiara Flamini ◽  
Hideo Okabe ◽  
...  

The methods of preparation of the group III nitrides AlN, GaN, and InN by laser ablation (i.e. laser sputtering), is here reviewed including studies on their properties. The technique, concerns direct ablation of nitride solid targets by laser to produce a plume which is collected on a substrate. Alternatively nitride deposition is obtained as a result of laser ablation of the metal and subsequent reaction in anNH3atmosphere. Optical multichannel emission spectroscopic analysis, and time of flight (TOF) mass spectrometry have been applied forin situidentification of deposition precursors in the plume moving from the target. Epitaxial AlN, GaN, and InN thin films on various substrates have been grown. X-ray diffraction, scanning electron microscopy, have been used to characterise thin films deposited by these methods.


Clay Minerals ◽  
2013 ◽  
Vol 48 (1) ◽  
pp. 1-20 ◽  
Author(s):  
A. A. Masoud ◽  
G. Christidis ◽  
K. Koike

AbstractDetailed multi-scale characterization of the kaolin quality and the controlling depositional environment is crucial for optimal quality upgrading and for prioritizing potential exploitation areas. In the present work, the quality of El-Tih kaolin, Egypt, was investigated using the chemical/mineralogical characteristics as well as the field observations of the clay. Chemical analysis of major oxides was carried out using energy dispersive X-ray fluorescence (EDS-XRF) spectrometry. Mineralogical analyses were carried out using X-ray diffraction (XRD) and scanning electron microscopy coupled with wavelength-dispersive X-ray spectroscopy (SEM-WDS). Spatial heterogeneity of the quality was evaluated applying kriging geostatistical techniques and potential zones were identified.Results clarified an upward gradual deterioration of the quality via a decrease in the Al2O3content and thickness of the clay layers, and an increase in the TiO2content. According to the kriging maps, areas of high potentiality indices (PI) characterized by high Al2O3and low SiO2content and maximum thickness of the kaolin are located to the west and east, and decrease toward the central part of the study area. The high PI zones are dominated by pseudo-hexagonal platy kaolinite, often forming accordion- and book-like aggregates with subordinate quartz and traces of Fe and Ti oxides, yielding minimal TiO2and Fe2O3contents. These zones of high PI are considered optimal for exploitation. Kaolinite was formed as a result of intensive weathering of rhyolite/granite and basalt in the source area, and subsequent erosion, transportation and deposition of the weathering mantles in a flood environment with marked depositional energy variations. Results allowed comparison with worldwide kaolin occurrences, and suggested the suitability of the studied kaolins for use in paper coating and filling and in higher-grade ceramics, after removal of free Fe- and Ti-oxide impurities.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


2018 ◽  
Vol 2 (1) ◽  
pp. 7
Author(s):  
S Chirino ◽  
Jaime Diaz ◽  
N Monteblanco ◽  
E Valderrama

The synthesis and characterization of Ti and TiN thin films of different thicknesses was carried out on a martensitic stainless steel AISI 410 substrate used for tool manufacturing. The mechanical parameters between the interacting surfaces such as thickness, adhesion and hardness were measured. By means of the scanning electron microscope (SEM) the superficial morphology of the Ti/TiN interface was observed, finding that the growth was of columnar grains and by means of EDAX the existence of titanium was verified.  Using X-ray diffraction (XRD) it was possible to observe the presence of residual stresses (~ -3.1 GPa) due to the different crystalline phases in the coating. Under X-ray photoemission spectroscopy (XPS) it was possible to observe the molecular chemical composition of the coating surface, being Ti-N, Ti-N-O and Ti-O the predominant ones.


Author(s):  
D. Nagasamy Venkatesh ◽  
S. Karthick ◽  
M. Umesh ◽  
G. Vivek ◽  
R.M. Valliappan ◽  
...  

Roxythromycin/ β-cyclodextrin (Roxy/ β-CD) dispersions were prepared with a view to study the influence of β-CD on the solubility and dissolution rate of this poorly soluble drug. Phase-solubility profile indicated that the solubility of roxythromycin was significantly increased in the presence of β-cyclodextrin and was classified as AL-type, indicating the 1:1 stoichiometric inclusion complexes. Physical characterization of the prepared systems was carried out by differential scanning calorimetry (DSC), X-ray diffraction studies (XRD) and IR studies. Solid state characterization of the drug β-CD binary system using XRD, FTIR and DSC revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement of dissolution rate.


Sign in / Sign up

Export Citation Format

Share Document