Visualization of hydrogen gas evolution during deformation and fracture in SCM 440 steel with different tempering conditions

2012 ◽  
Vol 534 ◽  
pp. 495-503 ◽  
Author(s):  
Keitaro Horikawa ◽  
Nobuaki Ando ◽  
Hidetoshi Kobayashi ◽  
Wataru Urushihara
2012 ◽  
Vol 706-709 ◽  
pp. 295-300
Author(s):  
Keitaro Horikawa ◽  
Hiroyuki Yamada ◽  
Masahide Mutsuo ◽  
Hidetoshi Kobayashi

Hydrogen gas evolution behaviour during deformation and fracture in Al-Zn-Mg alloys with and without copper additions was examined by using a testing machine equipped with a quadrupole mass spectrometer in an ultrahigh vacuum chamber (QMS-UHV) and by a hydrogen microprint technique (HMT). The QMS-UHV testing revealed that hydrogen gas was evolved at the moment of grain boundary fracture, in particular. This suggested that hydrogen atoms primarily dissolved were trapped at the grain boundaries before the fracture. It was also revealed that hydrogen gas evolution behaviour was changed according to the testing strain rate. The HMT also revealed that silver particles, which represented the emission sites of hydrogen, were observed mainly around the second phase inclusions and the grain boundaries.


RADIOISOTOPES ◽  
2000 ◽  
Vol 49 (7) ◽  
pp. 354-358 ◽  
Author(s):  
Satoshi SEINO ◽  
Ryosuke FUJIMOTO ◽  
Takao YAMAMOTO ◽  
Masahiro KATSURA ◽  
Shuichi OKUDA ◽  
...  

2020 ◽  
Vol 11 (19) ◽  
pp. 5037-5042 ◽  
Author(s):  
Sandip Das ◽  
Kulbir ◽  
Somnath Ghosh ◽  
Subash Chandra Sahoo ◽  
Pankaj Kumar

Base-induced hydrogen (H2) gas evolution in the nitric oxide monoxygenation reaction.


2018 ◽  
Vol 47 (26) ◽  
pp. 8801-8806 ◽  
Author(s):  
Yanyu Wu ◽  
José M. Veleta ◽  
Diya Tang ◽  
Alex D. Price ◽  
Cristian E. Botez ◽  
...  

Herein, we report a crystalline CoTcPP-based [TcPP = the anion of meso-tetra(4-carboxyphenyl)porphyrin] polymeric system, 1, as a hydrogen evolution reaction (HER) electrocatalyst in acidic aqueous media.


Author(s):  
Shin-ichi Komazaki ◽  
Rie Maruyama ◽  
Tatsuo Honno ◽  
Toshihei Misawa

In order to investigate the susceptibility of the ultra high strength low alloy steel to hydrogen embrittlement, a slow strain rate tensile test was carried out in boric acid-borax buffer aqueous solutions of pH 10 at the potential range from corrosion potential to hydrogen gas evolution potential, including adsorbed hydrogen potential. Experimental results revealed that the susceptibility to hydrogen embrittlement was dependent on the applied potential and increased linearly with increasing applied cathodic potential in the adsorbed hydrogen potential region. On the other hand, in the hydrogen gas evolution potential region, the susceptibility was independent of the applied potential and showed almost no variation. Based on the results obtained, these changes in susceptibility to hydrogen embrittlement with applied potential have been discussed in terms of the variation in reduction behavior of oxide films on the specimen surface.


Author(s):  
Kentaro Wada ◽  
Junichiro Yamabe ◽  
Yuhei Ogawa ◽  
Osamu Takakuwa ◽  
Takashi Iijima ◽  
...  

Abstract The effect of hydrogen on the deformation and fracture behavior in pure Cu, pure Ni and Cu–Ni alloy was studied via tensile tests of H-charged, smooth and circumferentially-notched specimens at room temperature (RT) and 77 K. Hydrogen-diffusion properties were determined by the desorption method. To obtain a uniform hydrogen concentration in the H-charged specimens, specimens were exposed to 100-MPa hydrogen gas at 543 K for 200 h, based on the determined hydrogen diffusivity. In tensile tests of smooth pure Ni and Cu–Ni alloy specimens at RT, common hydrogen effects were detected, namely, an increase in yield and flow stresses — a hardening effect; and a ductility loss that was accompanied by a change in fracture surface from ductile to brittle feature — an embrittling effect. With regard to the embrittling effect, the pure Ni and Cu–Ni alloy showed different fracture-surface morphologies at RT; the pure Ni showed an intergranular (IG) surface and the Cu–Ni alloy surface was flat. However, a number of IG cracks were detected beneath the fracture surfaces on the smooth Cu-Ni alloy. The tensile tests of the H-charged smooth specimens at 77 K yielded an IG surface for the pure Ni and a ductile fracture surface with dimples in the Cu–Ni alloy. In contrast, tensile tests of the H-charged, notched specimens at RT demonstrated clear IG fractures for the pure Ni and Cu–Ni alloy. These facts indicate that IG cracking was the first step in the embrittling process for the pure Ni and Cu–Ni alloy, and IG cracking was accompanied by a large plastic deformation that formed the flat surface (unclear IG surface) for the smooth Cu–Ni alloy. Considering that the HE of both pure Ni and Cu–Ni alloy was related to IG cracking, possible mechanisms were discussed and tensile tests performed at 77 K suggested two possibilities: (I) interaction between hydrogen-moving dislocation is more important in the HE process of the Cu-Ni alloy compared to the pure Ni; (II) hydrogen transportation towards grain boundaries are required to cause the IG fracture in the Cu-Ni alloy.


CORROSION ◽  
1985 ◽  
Vol 41 (7) ◽  
pp. 389-397 ◽  
Author(s):  
R. N. Parkins ◽  
A. J. Markworth ◽  
J. H. Holbrook ◽  
R. R. Fessler
Keyword(s):  

1994 ◽  
Vol 353 ◽  
Author(s):  
Fumio Matsuda ◽  
Ryutaro Wada ◽  
Kazuo Fujiwara ◽  
Ai Fujiwara

AbstractAs a sequence of studies to evaluate the quantity of gas evolution from low/intermediate level waste repositories,hydrogen gas evoluted from corrosion of carbon steel in simulated repository environment was evaluated by laboratory experiments. The experimental results on the hydrogen gas evolution both in air purging condition simulated oxidizing environment and nitrogen purging condition simulated reducing environment, are summarized as follows.(1)Hydrogen gas evolution enough to analyze quantitavely by gas chromatography (>5ppm) has been recognized under almost all test conditions except reducing equilibrium cement water.(2)Effects of purging gas (air,nitrogen) on the hydrogen gas evolution and the corrosion rate calculated from weight loss were air purge > nitrogen purge. On the other hand, the contribution ratio of hydrogen evolution reaction in corrosion rate was nitrogen purge > air purge.(3)Effects of test solution on the hydrogen evolution rate were as fo11ows. • Air Purge :Equilibrium Bentonite Water ≈ Equilibrium Cement Water > Synthetic Sea Watert• N2 Purge:Synthetic Sea Water > Equilibrium Bentonite Water >> Equilibrium Cement Water(4)No distinct effect of crevice geometry of test specimen on hydrogen evolution rate was recognized. Only under the reducing equilibrium cement water, however, the increase of hydrogen evolution was confirmed after the immersion of several hundred hours.(5)Hydrogen evolution rates tended to decrease with testing time except in the reducing equilibrium cement water.(6)No distinct difference of hydrogen evolution rate between steels (SPHC, SPCC) was observed.


Sign in / Sign up

Export Citation Format

Share Document