Martensite transformation behavior and mechanical properties of cold-rolled metastable Cr-Mn-Ni-N austenitic stainless steels

2018 ◽  
Vol 724 ◽  
pp. 411-420 ◽  
Author(s):  
Yichong Zhang ◽  
Moucheng Li ◽  
Hongyun Bi ◽  
Jiaqing Gu ◽  
Dexiang Chen ◽  
...  
Alloy Digest ◽  
1999 ◽  
Vol 48 (8) ◽  

Abstract ALZ 316 is an austenitic stainless steel with good formability, corrosion resistance, toughness, and mechanical properties. It is the basic grade of the stainless steels, containing 2 to 3% molybdenum. After the 304 series, the molybdenum-containing stainless steels are the most widely used austenitic stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-756. Producer or source: ALZ nv.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2622
Author(s):  
Malcolm Griffiths

Austenitic stainless steels are used for core internal structures in sodium-cooled fast reactors (SFRs) and light-water reactors (LWRs) because of their high strength and retained toughness after irradiation (up to 80 dpa in LWRs), unlike ferritic steels that are embrittled at low doses (<1 dpa). For fast reactors, operating temperatures vary from 400 to 550 °C for the internal structures and up to 650 °C for the fuel cladding. The internal structures of the LWRs operate at temperatures between approximately 270 and 320 °C although some parts can be hotter (more than 400 °C) because of localised nuclear heating. The ongoing operability relies on being able to understand and predict how the mechanical properties and dimensional stability change over extended periods of operation. Test reactor irradiations and power reactor operating experience over more than 50 years has resulted in the accumulation of a large amount of data from which one can assess the effects of irradiation on the properties of austenitic stainless steels. The effect of irradiation on the intrinsic mechanical properties (strength, ductility, toughness, etc.) and dimensional stability derived from in- and out-reactor (post-irradiation) measurements and tests will be described and discussed. The main observations will be assessed using radiation damage and gas production models. Rate theory models will be used to show how the microstructural changes during irradiation affect mechanical properties and dimensional stability.


2009 ◽  
Vol 44 (16) ◽  
pp. 4499-4502 ◽  
Author(s):  
C. Capdevila ◽  
T. De Cock ◽  
F. G. Caballero ◽  
D. San Martin ◽  
C. Garcia de Andres

2017 ◽  
Vol 23 (2) ◽  
pp. 111 ◽  
Author(s):  
Andrea Di Schino ◽  
Maria Richetta

<p>Even if relations predicting the mechanical properties on bars of austenitic stainless steels are already available, but no systematic works was carried out in order to predict mechanical properties in after cold rolling and annealing.   The tensile properties of a large number of cold rolled and annealed AISI 304 stainless steel are here correlated with their chemical composition and microstructure. Quantitative effects of various strengthening mechanisms such as grain size, d– ferrite content and solid solution strengthening by both interstitial and substitutional solutes are described. Interstitial solutes have by far the greatest strengthening effect and, among the substitutional solutes, the ferrite – stabilising elements have a greater effect than the austenite – stabilising elements. Regression equations are developed which predict with good accuracy the proof stress and tensile strength in AISI 304 stainless steels.</p>


Sign in / Sign up

Export Citation Format

Share Document