Heterogeneous microstructure of an Al2O3 dispersion strengthened Cu by spark plasma sintering and extrusion and its effect on tensile properties and electrical conductivity

2018 ◽  
Vol 730 ◽  
pp. 328-335 ◽  
Author(s):  
Dengshan Zhou ◽  
Xinkai Wang ◽  
Ondrej Muránsky ◽  
Xuerong Wang ◽  
Yuehuang Xie ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1150
Author(s):  
Nicolás A. Ulloa-Castillo ◽  
Roberto Hernández-Maya ◽  
Jorge Islas-Urbano ◽  
Oscar Martínez-Romero ◽  
Emmanuel Segura-Cárdenas ◽  
...  

This article focuses on exploring how the electrical conductivity and densification properties of metallic samples made from aluminum (Al) powders reinforced with 0.5 wt % concentration of multi-walled carbon nanotubes (MWCNTs) and consolidated through spark plasma sintering (SPS) process are affected by the carbon nanotubes dispersion and the Al particles morphology. Experimental characterization tests performed by scanning electron microscopy (SEM) and by energy dispersive spectroscopy (EDS) show that the MWCNTs were uniformly ball-milled and dispersed in the Al surface particles, and undesirable phases were not observed in X-ray diffraction measurements. Furthermore, high densification parts and an improvement of about 40% in the electrical conductivity values were confirmed via experimental tests performed on the produced sintered samples. These results elucidate that modifying the powder morphology using the ball-milling technique to bond carbon nanotubes into the Al surface particles aids the ability to obtain highly dense parts with increasing electrical conductivity properties.


2007 ◽  
Vol 534-536 ◽  
pp. 1489-1492 ◽  
Author(s):  
Dae Hwan Kwon ◽  
Jong Won Kum ◽  
Thuy Dang Nguyen ◽  
Dina V. Dudina ◽  
Pyuck Pa Choi ◽  
...  

Dispersion-strengthened copper with TiB2 was produced by ball-milling and spark plasma sintering (SPS).Ball-milling was performed at a rotation speed of 300rpm for 30 and 60min in Ar atmosphere by using a planetary ball mill (AGO-2). Spark-plasma sintering was carried out at 650°C for 5min under vacuum after mechanical alloying. The hardness of the specimens sintered using powder ball milled for 60min at 300rpm increased from 16.0 to 61.8 HRB than that of specimen using powder mixed with a turbular mixer, while the electrical conductivity varied from 93.40% to 83.34%IACS. In the case of milled powder, hardness increased as milling time increased, while the electrical conductivity decreased. On the other hand, hardness decreased with increasing sintering temperature, but the electrical conductiviey increased slightly


2007 ◽  
Vol 336-338 ◽  
pp. 854-856
Author(s):  
Yong Gao Yan ◽  
Xin Feng Tang ◽  
Hai Jun Liu ◽  
Ling Ling Yin ◽  
Qing Jie Zhang

Ag1-xPbmSbTe2+m (m = 6, 10, 18; x = 0, 0.5, 0.75) compounds were prepared by melting-spark plasma sintering (SPS) process. The effects of m and x on the thermoelectric properties of the compounds were investigated. The results indicate that all samples are n-type conduction. For Ag1-xPb18SbTe20 (x = 0, 0.5, 0.75), the electrical conductivity decreases, whereas Seebeck coefficient increases, with increasing Ag concentration. For AgPbmSbTe2+m (m = 6, 10, 18), as m increases, the Seebeck coefficient slightly decreases and the electrical conductivity increases first, with a maximum at m =10, and then decreases. The thermal conductivity increases with increasing m.


2007 ◽  
Vol 280-283 ◽  
pp. 771-774
Author(s):  
Tao Sun ◽  
Xiao Shan Ning ◽  
Yong Sheng Han ◽  
He Ping Zhou

NiAl2O4-metal composite material is an effective candidate for anodes used in industrial production of aluminium as a substitute for graphite anodes. NiAl2O4-Cu-Ni anode was prepared by spark plasma sintering in present paper. According to the density and electrical conductivity of the anodes, the optimal process parameters were given and the result showed that sintering temperature had the most significant influence on the properties of the inert anodes. Moreover, NiO was added to the inert anodes. The results showed that adding NiO will highly increase electrical conductivity of the inert anodes. SEM and optical microscope were applied to study the mechanism of the effect of NiO on the inert anodes.


2013 ◽  
Vol 1490 ◽  
pp. 57-62 ◽  
Author(s):  
Natsuko Mikami ◽  
Keishi Nishio ◽  
Koya Arai ◽  
Tatsuya Sakamoto ◽  
Masahiro Minowa ◽  
...  

ABSTRACTThe thermoelectrical properties of α and γ phases of NaxCo2O4 having different amounts of Na were evaluated. The γ NaxCo2O4 samples were synthesized by thermal decomposition in a metal-citric acid compound, and the α NaxCo2O4 samples were synthesized by self-flux processing. Dense bulk ceramics were fabricated using spark plasma sintering (SPS), and the sintered samples were of high density and highly oriented. The thermoelectrical properties showed that γ NaxCo2O4 had higher electrical conductivity and lower thermal conductivity compared with α NaxCo2O4 and that α NaxCo2O4 had a larger Seebeck coefficient. These results show that γ NaxCo2O4 has a larger power factor and dimensionless figure of merit, ZT, than α NaxCo2O4.


Ceramics ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 437-446
Author(s):  
Vyacheslav V. Krizhanovskiy ◽  
Vyacheslav I. Mali

Numerical calculations were carried out to simulate, under conditions of close spark plasma sintering (SPS), the temperature distribution during the passage of current in dense cylindrical samples of two materials: aluminum oxide and copper located in graphite forms and clamped between cylindrical graphite punches. The investigated materials differ greatly in their electrical conductivity and other physicochemical properties. Calculations were carried out for various geometric parameters of the samples, as well as graphite molds and punches at varying heating rates from the passing current.


Sign in / Sign up

Export Citation Format

Share Document