Electrically assisted diffusion bonding of Ti2AlNb alloy sheet using CP-Ti foil interlayer: Microstructural characterization and mechanical tests

2019 ◽  
Vol 744 ◽  
pp. 733-745 ◽  
Author(s):  
Xiao Li ◽  
Guofeng Wang ◽  
Yibin Gu ◽  
Jianlei Yang
2021 ◽  
Vol 1016 ◽  
pp. 137-144
Author(s):  
Pedro Akira Bazaglia Kuroda ◽  
Fernanda de Freitas Quadros ◽  
Mycaela Vieira Nascimento ◽  
Carlos Roberto Grandini

This paper deals with the study of the development, structural and microstructural characterization and, selected mechanical properties of Ti-25Ta-50Zr alloy for biomedical applications. The alloy was melted in an arc furnace and various solution heat treatments were performed to analyze the influence of the temperature and time on the structure, microstructure, microhardness and elastic modulus of the samples. The structural and microstructural results, obtained by X-ray diffraction and microscopy techniques, showed that the solution heat treatment performed at high temperatures induces the formation of the β phase, while solution heat treatment performed at low temperatures induces the formation of the α” and ω metastable phases. Regarding the effect of time, samples subjected to heat treatment for 6 hours have only the β phase, indicating that lengthy treatments suppress the α” phase. Regarding the hardness and elastic modulus, the alloy with the α” and ω phases, after treatment performed at a temperature of 500 °C, has a high hardness value and elastic modulus due to the presence of the ω phase that hardens and weakens alloys. The titanium alloys developed in this study have excellent mechanical properties results for use in the orthopedic area, better than many commercial materials such as cp-Ti, stainless steel and Co-Cr alloys.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3300
Author(s):  
Boxian Zhang ◽  
Chunhuan Chen ◽  
Jianchao He ◽  
Jinbao Hou ◽  
Lu Chai ◽  
...  

To solve the problem of poor weldability between TiAl-based and Ti2AlNb-based alloys, spark plasma diffusion bonding was employed to join a TiAl alloy and a Ti2AlNb alloy with a pure Ti foil as interlayer at 950 °C/10 KN/60 min. After welding, slow cooling was carried out at a rate of 5 °C/min, followed by homogenization at 800 °C for 24 h. The microstructural evolution and elemental migration of the joint were analyzed via a scanning electron microscope equipped with an energy dispersive spectrometer, while the mechanical properties of the joint were assessed via microhardness and tensile tests. The results show that the spark plasma diffusion bonding formed a joint of TiAl/Ti/Ti2AlNb without microcracks or microvoids, while also effectively protecting the base metal. Before heat treatment, the maximum hardness value (401 HV) appeared at the Ti2AlNb/Ti interface, while the minimum hardness value (281 HV) occurred in the TiAl base metal. The tensile strength of the heat-treated joint at room temperature was measured to be up to 454 MPa, with a brittle fracture occurring in the interlayer. The tensile strength of the joint at 650 °C was measured to be up to 538 MPa, with intergranular cracks occurring in the TiAl base metal.


2012 ◽  
Vol 585 ◽  
pp. 430-434 ◽  
Author(s):  
B. Ramesh Kumar ◽  
N. Chauhan ◽  
P.M. Raole

Laser beam welding offers various advantages over the other conventional weld processes. In fusion reactor, some critical components with high weld quality are proposed to be fabricated with Laser beam welding. The present paper reports the mechanical properties and micro structural characterization of 8 mm thick SS 316L samples fabricated with high power CO2 Laser welding system. The process parameters of 3.5 kW and speed of 600 mm/min with Argon shielding gas are used. The Laser welded samples are subjected to non destructive testing with X-ray radiography and ultrasonic tests. The welded samples tested have indicated good quality joints with full penetration and no significant porosity and cracks. Further, the samples are subjected to standard mechanical tests namely tensile properties test (UTS), bend test and Impact Fracture test. The Laser weld joints produced better tensile properties as compared to the base metal. In addition, Vickers hardness tests and optical microstructure are studied for the base metal (BM), Heat Affected Zone (HAZ) and weld zone(WZ).


Sign in / Sign up

Export Citation Format

Share Document