Microstructural stability of low-cost Ni-base superalloys with a high volume fraction of cuboidal γ′ nanoprecipitates

Author(s):  
Jiudong Sun ◽  
Jinlin Li ◽  
Hongyao Yu ◽  
Zhenhua Wang ◽  
Qing Wang ◽  
...  
1995 ◽  
Vol 10 (10) ◽  
pp. 2415-2417 ◽  
Author(s):  
X.F. Yang ◽  
X.M. Xi

A rapid, pressureless infiltration technique for fabricating SiC-reinforced Al-Si composites is described. The infiltration can be performed by simply dipping a ceramic preform into a molten alloy in an open air environment. This method makes it possible to produce composites that contain a high volume fraction (80%) of a variety of ceramic reinforcements, including particulates and fibers. This technique has potential for low-cost and versatile production of SiC-Al-Si composites for many industrial applications, such as automobile components and electronic packaging.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Xu Zhao ◽  
Yadong Gong ◽  
Guiqiang Liang ◽  
Ming Cai ◽  
Bing Han

AbstractThe existing research on SiCp/Al composite machining mainly focuses on the machining parameters or surface morphology. However, the surface quality of SiCp/Al composites with a high volume fraction has not been extensively studied. In this study, 32 SiCp/Al specimens with a high volume fraction were prepared and their machining parameters measured. The surface quality of the specimens was then tested and the effect of the grinding parameters on the surface quality was analyzed. The grinding quality of the composite specimens was comprehensively analyzed taking the grinding force, friction coefficient, and roughness parameters as the evaluation standards. The best grinding parameters were obtained by analyzing the surface morphology. The results show that, a higher spindle speed should be chosen to obtain a better surface quality. The final surface quality is related to the friction coefficient, surface roughness, and fragmentation degree as well as the quantity and distribution of the defects. Lower feeding amount, lower grinding depth and appropriately higher spindle speed should be chosen to obtain better surface quality. Lower feeding amount, higher grinding depth and spindle speed should be chosen to balance grind efficiently and surface quality. This study proposes a systematic evaluation method, which can be used to guide the machining of SiCp/Al composites with a high volume fraction.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4143
Author(s):  
Youzheng Cui ◽  
Shenrou Gao ◽  
Fengjuan Wang ◽  
Qingming Hu ◽  
Cheng Xu ◽  
...  

Compared with other materials, high-volume fraction aluminum-based silicon carbide composites (hereinafter referred to as SiCp/Al) have many advantages, including high strength, small change in the expansion coefficient due to temperature, high wear resistance, high corrosion resistance, high fatigue resistance, low density, good dimensional stability, and thermal conductivity. SiCp/Al composites have been widely used in aerospace, ordnance, transportation service, precision instruments, and in many other fields. In this study, the ABAQUS/explicit large-scale finite element analysis platform was used to simulate the milling process of SiCp/Al composites. By changing the parameters of the tool angle, milling depth, and milling speed, the influence of these parameters on the cutting force, cutting temperature, cutting stress, and cutting chips was studied. Optimization of the parameters was based on the above change rules to obtain the best processing combination of parameters. Then, the causes of surface machining defects, such as deep pits, shallow pits, and bulges, were simulated and discussed. Finally, the best cutting parameters obtained through simulation analysis was the tool rake angle γ0 = 5°, tool clearance angle α0 = 5°, corner radius r = 0.4 mm, milling depth ap = 50 mm, and milling speed vc= 300 m/min. The optimal combination of milling parameters provides a theoretical basis for subsequent cutting.


2010 ◽  
Vol 5 (6) ◽  
pp. 379 ◽  
Author(s):  
Zhiqiang Li ◽  
Lin Jiang ◽  
Genlian Fan ◽  
Yong Xu ◽  
Di Zhang ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
pp. 7-11
Author(s):  
Karlina Rahmah ◽  
◽  
Suprihatin Suprihatin ◽  
Pulung Karo Karo ◽  
◽  
...  

This research was conducted to determine the effect of sintering time on the formation of the superconducting phase BSCCO-2212 by calculating the level of purity of the phases formed and looking at the microstructure. The variation of sintering time was 10, 20, 30 and 40 hours using the wet mixing method. The sample was calcinated with 800 °C for 10 hours and sintered with 830 °C. The XRD’s characterization result shows a decrease in phase purity with increasing the sintering time. The relative high volume fraction of the BSCCO-2212/ts10 sample is 90,48% while, the lowest volume fraction of BSCCO-2212/tc40 is 50,74%. The relative high orientation degree of BSCCO-2212/ts20 is 18,47% and the lowest orientation degree of BSCCO-2212/ts10 is 8,4%. The SEM’s characterization result shows of all samples have been oriented and have relatively little space between slabs (voids).


1995 ◽  
Vol 36 (10) ◽  
pp. 1219-1228 ◽  
Author(s):  
Akihisa Inoue ◽  
Hisamichi Kimura ◽  
Kenichiro Sasamori ◽  
Tsuyoshi Masumoto

Sign in / Sign up

Export Citation Format

Share Document