The influence of heat treatment on the crystallite size, dislocation density, stacking faults probability and optical band gap of nanostructured cadmium sulfide films

2015 ◽  
Vol 30 ◽  
pp. 118-127 ◽  
Author(s):  
V. Soleimanian ◽  
M. Saeedi ◽  
A. Mokhtari
2021 ◽  
pp. 2100015
Author(s):  
Vegard Skiftestad Olsen ◽  
Vetle Øversjøen ◽  
Daniela Gogova ◽  
Béla Pécz ◽  
Augustinas Galeckas ◽  
...  

2012 ◽  
Vol 534 ◽  
pp. 156-159 ◽  
Author(s):  
Dong Hua Fan ◽  
Rong Zhang ◽  
Hui Ren Peng

Cu2ZnSnS4 (CZTS) thin films are prepared by sulfurizing the precursors deposited by vacuum evaporation methods. The samples sulfurized at 500°C for 3h shows the strong (112) diffraction peak at 28.45˚, suggesting the successful synthesis of CZTS thin films. The X-ray diffraction shows that CZTS thin film prepared in Sn-poor condition have the best crystallinity. The Sn-dependent crystallite size was calculated to be 19.53-21.03 nm. In addition, we found that the optical band gap with various Sn contents can be modulated at 1.48-1.85 eV


NANO ◽  
2011 ◽  
Vol 06 (03) ◽  
pp. 251-258 ◽  
Author(s):  
B. VISWANATHAN ◽  
J. DHARMARAJA ◽  
J. BALAMURUGAN

Optical constants of cadmium sulfide (CdS) thin films were determined in the spectral range of 400–1200 nm from optical absorption and transmittance measurements for different bath temperatures. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) were the techniques used to determine the crystallite structure and morphology of the films. EDX images showed that a sample had a stoichiometric composition. The crystallite size and microstrain were calculated using the Williamson–Hall method. The optical band gap values of the films varied from 2.35 eV to 2.5 eV, depending on the bath temperature. Optical study was performed to calculate the refractive index (n), extinction coefficient (k), optical conductivity (σ), dielectric constant (real and imaginary), and optical band gap using transmission spectra. It has been observed that the conductivity of the synthesized films has a close relationship with the size of the crystallites. The optical conductivity and the crystallite size increase at a temperature of up to 70°C and then start decreasing when the temperature is still increased due to the change in phase from hexagonal to cubic in nature. Moreover, we observed that beyond this temperature the XRD peak shifts toward the nanoregion. The values of microstructure parameters change drastically, whereas the trend of optical constants remains the same.


2014 ◽  
Vol 32 (2) ◽  
pp. 193-197 ◽  
Author(s):  
P. Mallick

AbstractComposites of hematite (α-Fe2O3) nanoparticles with different materials (NiO, TiO2, MnO2 and Bi2O3) were synthesized. Effects of different materials on the microstructure and optical band gap of α-Fe2O3 nanoparticles were studied. Crystallite size and strain analysis indicated that the pure α-Fe2O3 nanoparticles were influenced by the presence of different materials in the composite sample. Crystallite size and strain estimated for all the samples followed opposite trends. However, the value of direct band gap decreased from ∼2.67 eV for the pure α-Fe2O3 nanoparticles to ∼2.5 eV for α-Fe2O3 composites with different materials. The value of indirect band gap, on the other hand, increased for all composite samples except for α-Fe2O3/Bi2O3.


Author(s):  
Saba Jameel Hasan

This study investigates the effect of annealing on The optical properties of (SnO2:Co) films prepared by spray pyrolysis (SP) technique at a glass substrate temperature (Ts = 773 K). The absorbance and transmittance spectra have been recorded in order to calculate the optical constant and the optical band gap energy of the films. It was found that the annealing affects all the parameters under investigations


Sign in / Sign up

Export Citation Format

Share Document