Study of morphological and electrical properties of the ZnO/p-Si hetero-junction: Application to sensing efficiency of low concentration of ethanol vapor at room temperature

2020 ◽  
Vol 109 ◽  
pp. 104926 ◽  
Author(s):  
S. Tata ◽  
L. Chabane ◽  
N. Zebbar ◽  
M. Trari ◽  
M. Kechouane ◽  
...  
2021 ◽  
pp. 1-21
Author(s):  
Zhuangzhuang Guo ◽  
Zhihong Zhang ◽  
Xiaoyan Cao ◽  
Dongfang Feng

2019 ◽  
Vol 11 (43) ◽  
pp. 40260-40266
Author(s):  
Kentaro Nakamura ◽  
Tsunaki Takahashi ◽  
Takuro Hosomi ◽  
Takehito Seki ◽  
Masaki Kanai ◽  
...  

2020 ◽  
Author(s):  
N. Sasidhar ◽  
T. Chandrashekar ◽  
B. Chethan ◽  
Y. T. Ravikiran ◽  
R. Megha

2016 ◽  
Author(s):  
Eka Nurfani ◽  
Angga Virdian ◽  
Robi Kurniawan ◽  
Shibghatullah Muhammady ◽  
Inge M. Sutjahja ◽  
...  

Open Physics ◽  
2008 ◽  
Vol 6 (2) ◽  
Author(s):  
Banarji Behera ◽  
Pratibindhya Nayak ◽  
Ram Choudhary

AbstractA polycrystalline sample of KCa2Nb5O15 with tungsten bronze structure was prepared by a mixed oxide method at high temperature. A preliminary structural analysis of the compound showed an orthorhombic crystal structure at room temperature. Surface morphology of the compound shows a uniform grain distribution throughout the surface of the sample. Studies of temperature variation on dielectric response at various frequencies show that the compound has a transition temperature well above the room temperature (i.e., 105°C), which was confirmed by the polarization measurement. Electrical properties of the material have been studied using a complex impedance spectroscopy (CIS) technique in a wide temperature (31–500°C) and frequency (102–106 Hz) range that showed only bulk contribution and non-Debye type relaxation processes in the material. The activation energy of the compound (calculated from both the loss and modulus spectrum) is same, and hence the relaxation process may be attributed to the same type of charge carriers. A possible ‘hopping’ mechanism for electrical transport processes in the system is evident from the modulus analysis. A plot of dc conductivity (bulk) with temperature variation demonstrates that the compound exhibits Arrhenius type of electrical conductivity.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 440
Author(s):  
Daniel Garcia-Osorio ◽  
Pilar Hidalgo-Falla ◽  
Henrique E. M. Peres ◽  
Josue M. Gonçalves ◽  
Koiti Araki ◽  
...  

Gas sensors are fundamental for continuous online monitoring of volatile organic compounds. Gas sensors based on semiconductor materials have demonstrated to be highly competitive, but are generally made of expensive materials and operate at high temperatures, which are drawbacks of these technologies. Herein is described a novel ethanol sensor for room temperature (25 °C) measurements based on hematite (α‑Fe2O3)/silver nanoparticles. The AgNPs were shown to increase the oxide semiconductor charge carrier density, but especially to enhance the ethanol adsorption rate boosting the selectivity and sensitivity, thus allowing quantification of ethanol vapor in 2–35 mg L−1 range with an excellent linear relationship. In addition, the α-Fe2O3/Ag 3.0 wt% nanocomposite is cheap, and easy to make and process, imparting high perspectives for real applications in breath analyzers and/or sensors in food and beverage industries. This work contributes to the advance of gas sensing at ambient temperature as a competitive alternative for quantification of conventional volatile organic compounds.


2012 ◽  
Vol 38 ◽  
pp. S73-S77 ◽  
Author(s):  
Xiaohua Zhang ◽  
Wei Ren ◽  
Peng Shi ◽  
M. Saeed Khan ◽  
Xiaofeng Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document