Preparation and characterization of a high-efficiency photoelectric detector composed of hexagonal Al2O3/TiO2/TiN/Au nanoporous array

2022 ◽  
Vol 139 ◽  
pp. 106348
Author(s):  
Asmaa M. Elsayed ◽  
Mohamed Shaban ◽  
Arafa H. Aly ◽  
Ashour M. Ahmed ◽  
Mohamed Rabia
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Roey Elnathan ◽  
Andrew W. Holle ◽  
Jennifer Young ◽  
Marina A. George ◽  
Omri Heifler ◽  
...  

AbstractProgrammable nano-bio interfaces driven by tuneable vertically configured nanostructures have recently emerged as a powerful tool for cellular manipulations and interrogations. Such interfaces have strong potential for ground-breaking advances, particularly in cellular nanobiotechnology and mechanobiology. However, the opaque nature of many nanostructured surfaces makes non-destructive, live-cell characterization of cellular behavior on vertically aligned nanostructures challenging to observe. Here, a new nanofabrication route is proposed that enables harvesting of vertically aligned silicon (Si) nanowires and their subsequent transfer onto an optically transparent substrate, with high efficiency and without artefacts. We demonstrate the potential of this route for efficient live-cell phase contrast imaging and subsequent characterization of cells growing on vertically aligned Si nanowires. This approach provides the first opportunity to understand dynamic cellular responses to a cell-nanowire interface, and thus has the potential to inform the design of future nanoscale cellular manipulation technologies.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Celosia Lukman ◽  
Christopher Yonathan ◽  
Stella Magdalena ◽  
Diana Elizabeth Waturangi

Abstract Objective This study was conducted to isolate and characterize lytic bacteriophages for pathogenic Escherichia coli from chicken and beef offal, and analyze their capability as biocontrol for several foodborne pathogens. Methods done in this research are bacteriophage isolation, purification, titer determination, application, determination of host range and minimum multiplicity of infection (miMOI), and bacteriophage morphology. Results Six bacteriophages successfully isolated from chicken and beef offal using EPEC and EHEC as host strain. Bacteriophage titers observed between 109 and 1010 PFU mL−1. CS EPEC and BL EHEC bacteriophage showed high efficiency in reduction of EPEC or EHEC contamination in meat about 99.20% and 99.04%. The lowest miMOI was 0.01 showed by CS EPEC bacteriophage. CI EPEC and BL EPEC bacteriophage suspected as Myoviridae family based on its micrograph from Transmission Electron Microscopy (TEM). Refers to their activity, bacteriophages isolated in this study have a great potential to be used as biocontrol against several foodborne pathogens.


Author(s):  
R. Puente ◽  
G. Paniagua ◽  
T. Verstraete

A multi-objective optimization procedure is applied to the 3D design of a transonic turbine vane row, considering efficiency and stator outlet pressure distortion, which is directly related to induced rotor forcing. The characteristic features that define different individuals along the Pareto Front are described, analyzing the differences between high efficiency airfoils and low interaction. Pressure distortion is assessed by means of a model that requires only of the computation the steady flow field in the domain of the stator. The reduction of aerodynamic rotor forcing is checked via unsteady multistage aerodynamic computations. A well known loss prediction method is used to drive the efficiency of one optimization run, while CFD analysis is used for another, in order to assess the reliability of both methods. In both cases, the decomposition of total losses is performed to quantify the influence on efficiency of reducing rotor forcing. Results show that when striving for efficiency, the rotor is affected by few, but intense shocks. On the other hand, when the objective is the minimization of distortion, multiple shocks will appear.


2010 ◽  
Vol 76 (21) ◽  
pp. 7268-7276 ◽  
Author(s):  
Rubén Cebrián ◽  
Mercedes Maqueda ◽  
José Luis Neira ◽  
Eva Valdivia ◽  
Manuel Martínez-Bueno ◽  
...  

ABSTRACT AS-48 is a 70-residue, α-helical, cationic bacteriocin produced by Enterococcus faecalis and is very singular in its circular structure and its broad antibacterial spectrum. The AS-48 preprotein consists of an N-terminal signal peptide (SP) (35 residues) followed by a proprotein moiety that undergoes posttranslational modifications to yield the mature and active circular protein. For the study of the specificity of the region of AS-48 that is responsible for maturation, three single mutants have been generated by site-directed mutagenesis in the as-48A structural gene. The substitutions were made just in the residues that are thought to constitute a recognition site for the SP cleavage enzyme (His-1, Met1) and in those involved in circularization (Met1, Trp70). Each derivative was expressed in the enterococcal JH2-2 strain containing the necessary native biosynthetic machinery for enterocin production. The importance of these derivatives in AS-48 processing has been evaluated on the basis of the production and structural characterization of the corresponding derivatives. Notably, only two of them (Trp70Ala and Met1Ala derivatives) could be purified in different forms and amounts and are characterized for their bactericidal activity and secondary structure. We could not detect any production of AS-48 in JH2-2(pAM401-81 His-1Ile ) by using the conventional chromatographic techniques, despite the high efficiency of the culture conditions applied to produce this enterocin. Our results underline the different important roles of the mutated residues in (i) the elimination of the SP, (ii) the production levels and antibacterial activity of the mature proteins, and (iii) protein circularization. Moreover, our findings suggest that His-1 is critically involved in cleavage site recognition, its substitution being responsible for the blockage of processing, thereby hampering the production of the specific protein in the cellular culture supernatant.


1996 ◽  
Vol 203 ◽  
pp. 97-102 ◽  
Author(s):  
G. Timò ◽  
C. Flores ◽  
R. Campesato ◽  
D. Passoni ◽  
B. Bollani
Keyword(s):  

Author(s):  
Jiaman Hong ◽  
Bo Wang ◽  
Xiaoqing Zhu ◽  
Zhichao Xiong ◽  
Yusen Huang ◽  
...  

In this paper, a novel embedded reflective grating (ERG) is presented to realize bi-function polarization operating at infrared band by finite element analysis (FEM). For transverse electric (TE) polarization, a two-port output (0th and −2nd orders) with an efficiency of more than 47% and excellent uniformity can be obtained. For transverse magnetic (TM) polarization, a high efficiency output of 94.72% can be achieved at the −2th order. The results of the analysis of the electric field intensity distribution, angular and wavelength bandwidths further demonstrate the advantages of the proposed grating. In addition, the tolerance analysis of period and duty cycle prove the feasibility of the grating in practical production.


2010 ◽  
Vol 17 (5) ◽  
pp. 1035-1044 ◽  
Author(s):  
Hong-Yan Zeng ◽  
He Jiang ◽  
Kui Xia ◽  
Ya-Ju Wang ◽  
Yan Huang

2006 ◽  
Vol 101 (4) ◽  
pp. 2202-2209 ◽  
Author(s):  
Ahmad M. Shoushtari ◽  
Mojdeh Zargaran ◽  
Majid Abdouss

Author(s):  
Vittorio Manente ◽  
Bengt Johansson ◽  
Pert Tunestal

EGR sweeps were performed on Ethanol Partially Premixed Combustion, PPC, to show different emission and efficiency trends as compared to Diesel PPC. The sweeps showed that increasing the EGR rate the efficiency does not diminish, HC trace is flat and CO is low even with 45% of EGR. NOx exponentially decreases by increasing EGR while soot levels are nearly zero throughout the sweep. The EGR sweeps underlined that at high EGR levels, the pressure rise rate is a concern. To overcome this problem and keep high efficiency and low emissions a sweep in timing of the pilot injection and pilot-main ratio was done at ∼16.5 bar gross IMEP. It was found that with a pilot-main ratio of 50–50 and by placing the pilot at −60 with 42% of EGR, NOx and soot are below EURO VI levels, the indicated efficiency is 47% and the maximum pressure rise rate is below 10 bar/CAD. Low load conditions were examined as well. It was found that by placing the SOI at −35 TDC the efficiency is maximized on the other hand when the injection is at −25 the emissions are minimized and the efficiency is only 1.64% lower than its optimum value. The idle test also showed that a certain amount of EGR is needed in order to minimize the pressure rise rate.


Sign in / Sign up

Export Citation Format

Share Document