Biodegradable and self-fluorescent ditelluride-bridged mesoporous organosilica/polyethylene glycol-curcumin nanocomposite for dual-responsive drug delivery and enhanced therapy efficiency

2022 ◽  
Vol 23 ◽  
pp. 100660
Author(s):  
X. Xia ◽  
J. Shi ◽  
Q. Deng ◽  
N. Xu ◽  
F. Huang ◽  
...  
Talanta ◽  
2018 ◽  
Vol 177 ◽  
pp. 203-211 ◽  
Author(s):  
Lin-Lin Hu ◽  
Jie Meng ◽  
Dan-Dan Zhang ◽  
Ming-Li Chen ◽  
Yang Shu ◽  
...  

2019 ◽  
Vol 233 ◽  
pp. 230-235 ◽  
Author(s):  
Li-li Lu ◽  
Wen-ya Xiong ◽  
Jun-bin Ma ◽  
Tian-fang Gao ◽  
Si-yuan Peng ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3067
Author(s):  
Mustafa A. Jihad ◽  
Farah T. M. Noori ◽  
Majid S. Jabir ◽  
Salim Albukhaty ◽  
Faizah A. AlMalki ◽  
...  

Flaky graphene oxide (GO) nanoparticles (NPs) were synthesized using Hummer’s method and then capped with polyethylene glycol (PEG) by an esterification reaction, then loaded with Nigella sativa (N. sativa) seed extract. Aiming to investigate their potential use as a smart drug delivery system against Staphylococcus aureus and Escherichia coli, the spectral and structural characteristics of GO-PEG NPs were comprehensively analyzed by XRD, AFM, TEM, FTIR, and UV- Vis. XRD patterns revealed that GO-PEG had different crystalline structures and defects, as well as a higher interlayer spacing. AFM results showed GONPs with the main grain size of 24.41 nm, while GONPs–PEG revealed graphene oxide aggregation with the main grain size of 287.04 nm after loading N. sativa seed extract, which was verified by TEM examination. A strong OH bond appeared in FTIR spectra. Furthermore, UV- Vis absorbance peaks at (275, 284, 324, and 327) nm seemed to be correlated with GONPs, GO–PEG, N. sativa seed extract, and GO –PEG- N. sativa extract. The drug delivery system was observed to destroy the bacteria by permeating the bacterial nucleic acid and cytoplasmic membrane, resulting in the loss of cell wall integrity, nucleic acid damage, and increased cell-wall permeability.


2021 ◽  
pp. 116016
Author(s):  
Weihe Yao ◽  
Chenyu Liu ◽  
Ning Wang ◽  
Hengjun Zhou ◽  
Farishta Shafiq ◽  
...  

Small ◽  
2013 ◽  
Vol 10 (3) ◽  
pp. 591-598 ◽  
Author(s):  
Dong Xiao ◽  
Hui-Zhen Jia ◽  
Jing Zhang ◽  
Chen-Wei Liu ◽  
Ren-Xi Zhuo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document