3D printed polylactic acid and acrylonitrile butadiene styrene fluidic structures for biological applications: Tailoring bio-material interface via surface modification

2021 ◽  
Vol 27 ◽  
pp. 102348
Author(s):  
Piyush P. Pokharna ◽  
Muralidhar K. Ghantasala ◽  
Elena A. Rozhkova
Polimery ◽  
2018 ◽  
Vol 63 (11/12) ◽  
pp. 785-790 ◽  
Author(s):  
Dawid Marciniak ◽  
Piotr Szewczykowski ◽  
Piotr Czyzewski ◽  
Dariusz Sykutera ◽  
Marek Bielinski

2020 ◽  
Vol 1005 ◽  
pp. 157-165
Author(s):  
Ray Noel M. Delda ◽  
Brian Jumaquio Tuazon ◽  
John Ryan Cortez Dizon

The aim of this study is to evaluate the interfacial adhesion of Fused Deposition Model (FDM)-printed Acrylonitrile butadiene styrene (ABS) and Polylactic acid (PLA) bonded using commercially – available epoxy and elastomeric bonding agents. An adhesive was applied to the 3D printed specimen to quantify the interfacial resistance, the surface was then examined under an optical microscope in order to assess the reaction of the polymer to the adhesives. The results reported in the present work allow the conclusion of levels of bond improvement in the polymers.


Author(s):  
Pawan Verma ◽  
Jabir Ubaid ◽  
Andreas Schiffer ◽  
Atul Jain ◽  
Emilio Martínez-Pañeda ◽  
...  

AbstractExperiments and finite element (FE) calculations were performed to study the raster angle–dependent fracture behaviour of acrylonitrile butadiene styrene (ABS) thermoplastic processed via fused filament fabrication (FFF) additive manufacturing (AM). The fracture properties of 3D-printed ABS were characterized based on the concept of essential work of fracture (EWF), utilizing double-edge-notched tension (DENT) specimens considering rectilinear infill patterns with different raster angles (0°, 90° and + 45/− 45°). The measurements showed that the resistance to fracture initiation of 3D-printed ABS specimens is substantially higher for the printing direction perpendicular to the crack plane (0° raster angle) as compared to that of the samples wherein the printing direction is parallel to the crack (90° raster angle), reporting EWF values of 7.24 kJ m−2 and 3.61 kJ m−2, respectively. A relatively high EWF value was also reported for the specimens with + 45/− 45° raster angle (7.40 kJ m−2). Strain field analysis performed via digital image correlation showed that connected plastic zones existed in the ligaments of the DENT specimens prior to the onset of fracture, and this was corroborated by SEM fractography which showed that fracture proceeded by a ductile mechanism involving void growth and coalescence followed by drawing and ductile tearing of fibrils. It was further shown that the raster angle–dependent strength and fracture properties of 3D-printed ABS can be predicted with an acceptable accuracy by a relatively simple FE model considering the anisotropic elasticity and failure properties of FFF specimens. The findings of this study offer guidelines for fracture-resistant design of AM-enabled thermoplastics. Graphical abstract


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mauricio Toro ◽  
Aura Cardona ◽  
Daniel Restrepo ◽  
Laura Buitrago

Abstract Background Material extrusion is used to 3D print anatomic models and guides. Sterilization is required if a 3D printed part touches the patient during an intervention. Vaporized Hydrogen Peroxide (VHP) is one method of sterilization. There are four factors to consider when sterilizing an anatomic model or guide: sterility, biocompatibility, mechanical properties, and geometric fidelity. This project focuses on geometric fidelity for material extrusion of one polymer acrylonitrile butadiene styrene (ABS) using VHP. Methods De-identified computed tomography (CT) image data from 16 patients was segmented using Mimics Innovation Suite (Materialise NV, Leuven, Belgium). Eight patients had maxillary and mandibular defects depicted with the anatomic models, and eight had mandibular defects for the anatomic guides. Anatomic models and guides designed from the surfaces of CT scan reconstruction and segementation were 3D printed in medical-grade acrylonitrile butadiene styrene (ABS) material extrusion. The 16 parts underwent low-temperature sterilization with VHP. The dimensional error was estimated after sterilization by comparing scanned images of the 3D printed parts. Results The average of the estimated mean differences between the printed pieces before and after sterilization were − 0,011 ± 0,252 mm (95%CI − 0,011; − 0,010) for the models and 0,003 ± 0,057 mm (95%CI 0,002; 0,003) for the guides. Regarding the dimensional error of the sterilized parts compared to the original design, the estimated mean differences were − 0,082 ± 0,626 mm (95%CI − 0,083; − 0,081) for the models and 0,126 ± 0,205 mm (95%CI 0,126, 0,127) for the guides. Conclusion This project tested and verified dimensional stability, one of the four prerequisites for introducing vaporized hydrogen peroxide into 3D printing of anatomic models and guides; the 3D printed parts maintained dimensional stability after sterilization.


Sign in / Sign up

Export Citation Format

Share Document