Optimization of hemicellulose saccharification by recombinant hemicellulase cocktail in the water soluble wheat arabinoxylan and pretreated barley straw

2016 ◽  
Vol 33 ◽  
pp. S110
Author(s):  
Seung-Moon Park
1998 ◽  
Vol 78 (3) ◽  
pp. 437-443 ◽  
Author(s):  
Masakazu Goto ◽  
Keiji Takabe ◽  
Isao Abe

Histochemical staining reactions with acid phloroglucinol and ultraviolet (UV) absorption spectra of the individual cell walls in spring barley straw (Hordeum vulgare L.) were investigated in combination with spectrometric measurements of the dioxane-water soluble lignin. Changes in lignin structure of barley straw with ammonia treatment were also investigated. Parenchyma and metaxylem vessel walls in untreated straw stained red with acid phloroglucinol and had higher absorbances around 550 nm than did epidermis and sclerenchyma cell walls, being consistent with the λmax of coniferylaldehyde. Following a reductive treatment, the lignins isolated from untreated barley straw showed an increase in UV absorbance at 280 nm and a decrease in that around 320 nm. These regions in UV and IR absorption spectra are assigned to conjugated carbonyl groups as shown by the narrowing of the IR absorption band at 1660 cm−1, and this was consistent with the staining observation of the specific tissue walls. UV microspectrometry indicated that parenchyma cell walls were much less lignified tissues than metaxylem and protoxylem vessel walls and probably epidermal cell walls. The lignins isolated from untreated and ammonia-treated straw had similar values for empirical formulae of the C9 units, phenolic hydroxyl and methoxyl group contents, and molecular weight, although the lignin of ammonia-treated straw had a slightly higher contents of nitrogen and hydrogen. The IR bands of 1730–1680 cm−1 in ammonia-treated straw lignin also disappeared. Therefore, ammonia appeared to react with the carbon atoms of the propane side-chain. Key words: Ammonia treatment, barley straw, lignin distribution, lignin structure, staining with acid phloroglucinol, ultraviolet microspectrometry


Author(s):  
R.C. Jakhmola ◽  
J.R. Weddell ◽  
J.F.D. Greenhalgh

Straw mixed with grass before ensiling absorbs excess water and reduces effluent, but dilutes nutrients like crude protein and water soluble carbohydrates, and increases cell wall constituents of the mixture. Earlier studies by the authers showed that treating straw with urea before ensiling with grass increased the digestibility of grass+straw silages. A cellulase enzyme preparation had small but positive effects on fermentation and digestibility. The present paper describes the effect of treating straw with urea and a cellulase enzyme preparation on chemical composition and nutritive value of Silages.Shredded barley straw was treated with urea (60 kg/t of straw dry matter) and a cellulase enzyme preparation (FS01, Forum Feeds Finland; 2 1/t of straw), just before mixing with the precision chopped perennial ryegrass in the ratio of 40:60 on a DM basis, in a 2 X 2 factorial experiment. All the four premixes were ensiled in polythene silos ( 1 t capacity). Eight male sheep were fed four silages in a 4 X 4 latin square design. Each feeding period consisted of a 4-day adjustment period, a 10-day preliminary feeding period and a 7-day period for measurement of digestibility.


Author(s):  
D.J. Kyle ◽  
F.D.DeB. Hovell ◽  
J. Bajracharya

The measurement of the degradability of a roughage by means of the nylon bag technique usually requires the preparation of the sample by grinding with a laboratory hammer mill. There is a wide range of screen sizes available which produce samples which range from a fine flour to coarser materials containing particles several millimeters in length. The objective of this experiment was to examine the effect of fineness of grinding on the degradation of roughages as measured by the nylon bag technique.Samples of hay and barley straw were ground through a 1 mm screen (fine) or through a bar screen with 3-5 by 33 mm slots (coarse). Two grammes contained in nylon bags were incubated in the rumen of each of four sheep fed on a good quality roughage, giving four observations per sample. All bags were introduced into the rumen at the same time relative to feeding. Zero-time losses were determined by washing bags without incubation. Water soluble material by filtration through a Whatman No. 1 filter paper. The particle size distribution of the hay used in Expt 1 is shown by Fig 1.


2013 ◽  
Vol 79 (6) ◽  
pp. 1990-1995 ◽  
Author(s):  
Pengjun Shi ◽  
Xiaoyan Chen ◽  
Kun Meng ◽  
Huoqing Huang ◽  
Yingguo Bai ◽  
...  

ABSTRACTWe cloned aPaenibacillussp. strain E18 5.3-kb xylanolytic gene cluster that contains three open reading frames encoding two family 43 α-l-arabinofuranosidases (Abf43A and Abf43B) and one family 10 xylanase (XynBE18). The deduced amino acid sequences of Abf43A and Abf43B were at most 68% and 63% identical to those of two putative family 43 proteins fromClostridiumsp. strain DL-VIII (EHI98634.1 and EHI98635.1), respectively, but were only 11% identical to each other. Recombinant Abf43A and Abf43B had similar activities at 45°C and pH 6.0 but varied in thermostabilities and substrate specificities. Abf43B was active against only 4-nitrophenyl α-l-arabinofuranoside, whereas Abf43A acted on 4-nitrophenyl α-l-arabinofuranoside, wheat arabinoxylan, 4-nitrophenyl α-d-xylopyranoside, and sugar beet arabinan. The sequential and combined effects on xylan degradation by XynBE18, Abf43A, and Abf43B were characterized. For beechwood, birchwood, and oat spelt xylans as the substrates, synergistic effects were found when XynBE18 and Abf43A or Abf43B were incubated together and when the substrates were first incubated with Abf43A or Abf43B and then with XynBE18. Further high-performance liquid chromatography (HPLC) analysis showed that the amounts of xylobiose and xylose increased sharply in the aforementioned reactions. For water-soluble wheat arabinoxylan as the substrate, Abf43A not only released arabinose but also had a synergistic effect with XynBE18. Synergy may arise as the result of removal of arabinose residues from xylans by α-l-arabinofuranosidases, which eliminates steric hindrance caused by the arabinose side chains and which allows xylanases to then degrade the xylan backbone, producing short xylooligosaccharides.


Author(s):  
J. G. Robertson ◽  
D. F. Parsons

The extraction of lipids from tissues during fixation and embedding for electron microscopy is widely recognized as a source of possible artifact, especially at the membrane level of cell organization. Lipid extraction is also a major disadvantage in electron microscope autoradiography of radioactive lipids, as in studies of the uptake of radioactive fatty acids by intestinal slices. Retention of lipids by fixation with osmium tetroxide is generally limited to glycolipids, phospholipids and highly unsaturated neutral lipids. Saturated neutral lipids and sterols tend to be easily extracted by organic dehydrating reagents prior to embedding. Retention of the more saturated lipids in embedded tissue might be achieved by developing new cross-linking reagents, by the use of highly water soluble embedding materials or by working at very low temperatures.


Author(s):  
J. D. McLean ◽  
S. J. Singer

The successful application of ferritin labeled antibodies (F-A) to ultrathin sections of biological material has been hampered by two main difficulties. Firstly the normally used procedures for the preparation of material for thin sectioning often result in a loss of antigenicity. Secondly the polymers employed for embedding may non-specifically absorb the F-A. Our earlier use of cross-linked polyampholytes as embedding media partially overcame these problems. However the water-soluble monomers used for this method still extract many lipids from the material.


Author(s):  
D.R. Mattie ◽  
J.W. Fisher

Jet fuels such as JP-4 can be introduced into the environment and come in contact with aquatic biota in several ways. Studies in this laboratory have demonstrated JP-4 toxicity to fish. Benzene is the major constituent of the water soluble fraction of JP-4. The normal surface morphology of bluegill olfactory lamellae was examined in conjunction with electrophysiology experiments. There was no information regarding the ultrastructural and physiological responses of the olfactory epithelium of bluegills to acute benzene exposure.The purpose of this investigation was to determine the effects of benzene on the surface morphology of the nasal rosettes of the bluegill sunfish (Lepomis macrochirus). Bluegills were exposed to a sublethal concentration of 7.7±0.2ppm (+S.E.M.) benzene for five, ten or fourteen days. Nasal rosettes were fixed in 2.5% glutaraldehyde and 2.0% paraformaldehyde in 0.1M cacodylate buffer (pH 7.4) containing 1.25mM calcium chloride. Specimens were processed for scanning electron microscopy.


Author(s):  
H. J. Arnott ◽  
M. A. Webb ◽  
L. E. Lopez

Many papers have been published on the structure of calcium oxalate crystals in plants, however, few deal with the early development of crystals. Large numbers of idioblastic calcium oxalate crystal cells are found in the leaves of Vitis mustangensis, V. labrusca and V. vulpina. A crystal idioblast, or raphide cell, will produce 150-300 needle-like calcium oxalate crystals within a central vacuole. Each raphide crystal is autonomous, having been produced in a separate membrane-defined crystal chamber; the idioblast''s crystal complement is collectively embedded in a water soluble glycoprotein matrix which fills the vacuole. The crystals are twins, each having a pointed and a bidentate end (Fig 1); when mature they are about 0.5-1.2 μn in diameter and 30-70 μm in length. Crystal bundles, i.e., crystals and their matrix, can be isolated from leaves using 100% ETOH. If the bundles are treated with H2O the matrix surrounding the crystals rapidly disperses.


Author(s):  
B. J. Grenon ◽  
A. J. Tousimis

Ever since the introduction of glutaraldehyde as a fixative in electron microscopy of biological specimens, the identification of impurities and consequently their effects on biologic ultrastructure have been under investigation. Several reports postulate that the impurities of glutaraldehyde, used as a fixative, are glutaric acid, glutaraldehyde polymer, acrolein and glutaraldoxime.Analysis of commercially available biological or technical grade glutaraldehyde revealed two major impurity components, none of which has been reported. The first compound is a colorless, water-soluble liquid with a boiling point of 42°C at 16 mm. Utilizing Nuclear Magnetic Resonance (NMR) spectroscopic analysis, this compound has been identified to be — dihydro-2-ethoxy 2H-pyran. This impurity component of the glutaraldehyde biological or technical grades has an UV absorption peak at 235nm. The second compound is a white amorphous solid which is insoluble in water and has a melting point of 80-82°C. Initial chemical analysis indicates that this compound is an aldol condensation product(s) of glutaraldehyde.


Sign in / Sign up

Export Citation Format

Share Document