scholarly journals Development of the brain functional connectome follows puberty-dependent nonlinear trajectories

NeuroImage ◽  
2021 ◽  
Vol 229 ◽  
pp. 117769
Author(s):  
Zeus Gracia-Tabuenca ◽  
Martha Beatriz Moreno ◽  
Fernando A. Barrios ◽  
Sarael Alcauter
2021 ◽  
Author(s):  
Qiushi Wang ◽  
Yuehua Xu ◽  
Tengda Zhao ◽  
Zhilei Xu ◽  
Yong He ◽  
...  

Abstract The functional connectome is highly distinctive in adults and adolescents, underlying individual differences in cognition and behavior. However, it remains unknown whether the individual uniqueness of the functional connectome is present in neonates, who are far from mature. Here, we utilized the multiband resting-state functional magnetic resonance imaging data of 40 healthy neonates from the Developing Human Connectome Project and a split-half analysis approach to characterize the uniqueness of the functional connectome in the neonatal brain. Through functional connectome-based individual identification analysis, we found that all the neonates were correctly identified, with the most discriminative regions predominantly confined to the higher-order cortices (e.g., prefrontal and parietal regions). The connectivities with the highest contributions to individual uniqueness were primarily located between different functional systems, and the short- (0–30 mm) and middle-range (30–60 mm) connectivities were more distinctive than the long-range (>60 mm) connectivities. Interestingly, we found that functional data with a scanning length longer than 3.5 min were able to capture the individual uniqueness in the functional connectome. Our results highlight that individual uniqueness is present in the functional connectome of neonates and provide insights into the brain mechanisms underlying individual differences in cognition and behavior later in life.


2018 ◽  
Vol 75 (7) ◽  
pp. 749 ◽  
Author(s):  
Tobias Kaufmann ◽  
Dag Alnæs ◽  
Christine L. Brandt ◽  
Francesco Bettella ◽  
Srdjan Djurovic ◽  
...  

NeuroImage ◽  
2016 ◽  
Vol 127 ◽  
pp. 324-332 ◽  
Author(s):  
Tobias Kaufmann ◽  
Torbjørn Elvsåshagen ◽  
Dag Alnæs ◽  
Nathalia Zak ◽  
Per Ø. Pedersen ◽  
...  

2019 ◽  
Vol 41 (3) ◽  
pp. 697-709 ◽  
Author(s):  
Olga Therese Ousdal ◽  
Tobias Kaufmann ◽  
Knut Kolskår ◽  
Alexandra Vik ◽  
Eike Wehling ◽  
...  

2021 ◽  
Vol 118 (49) ◽  
pp. e2110811118
Author(s):  
Young Hye Kwon ◽  
Kwangsun Yoo ◽  
Hillary Nguyen ◽  
Yong Jeong ◽  
Marvin M. Chun

While there is a substantial amount of work studying multilingualism’s effect on cognitive functions, little is known about how the multilingual experience modulates the brain as a whole. In this study, we analyzed data of over 1,000 children from the Adolescent Brain Cognitive Development (ABCD) Study to examine whether monolinguals and multilinguals differ in executive function, functional brain connectivity, and brain–behavior associations. We observed significantly better performance from multilingual children than monolinguals in working-memory tasks. In one finding, we were able to classify multilinguals from monolinguals using only their whole-brain functional connectome at rest and during an emotional n-back task. Compared to monolinguals, the multilingual group had different functional connectivity mainly in the occipital lobe and subcortical areas during the emotional n-back task and in the occipital lobe and prefrontal cortex at rest. In contrast, we did not find any differences in behavioral performance and functional connectivity when performing a stop-signal task. As a second finding, we investigated the degree to which behavior is reflected in the brain by implementing a connectome-based behavior prediction approach. The multilingual group showed a significant correlation between observed and connectome-predicted individual working-memory performance scores, while the monolingual group did not show any correlations. Overall, our observations suggest that multilingualism enhances executive function and reliably modulates the corresponding brain functional connectome, distinguishing multilinguals from monolinguals even at the developmental stage.


2021 ◽  
Author(s):  
J. S. Jones ◽  
D. E. Astle ◽  

AbstractBehavioural difficulties are seen as hallmarks of many neurodevelopmental conditions. Differences in functional brain organisation have been observed in these conditions, but little is known about how they are related to a child’s profile of behavioural difficulties. We investigated whether behavioural difficulties are associated with how the brain is functionally organised in an intentionally heterogeneous and transdiagnostic sample of 957 children aged 5-15. We used consensus community detection to derive data-driven profiles of behavioural difficulties and constructed functional connectomes from a subset of 238 children with resting-state functional Magnetic Resonance Imaging (fMRI) data. We identified three distinct profiles of behaviour that were characterised by principal difficulties with hot executive function, cool executive function, and learning. Global organisation of the functional connectome did not differ between the groups, but multivariate patterns of connectivity at the level of Intrinsic Connectivity Networks (ICNs), nodes, and hubs significantly predicted group membership in held-out data. Fronto-parietal connector hubs were under-connected in all groups relative to a comparison sample, and children with hot vs cool executive function difficulties were distinguished by connectivity in ICNs associated with cognitive control, emotion processing, and social cognition. This demonstrates both general and specific neurodevelopmental risk factors in the functional connectome.


2021 ◽  
Vol 51 ◽  
pp. e58
Author(s):  
Daniel Roelfs ◽  
Dennis van der Meer ◽  
Dag Alnæs ◽  
Oleksandr Frei ◽  
Robert Loughnan ◽  
...  

2019 ◽  
Author(s):  
Andreas Horn ◽  
Gregor Wenzel ◽  
Friederike Irmen ◽  
Julius Hübl ◽  
Ningfei Li ◽  
...  

AbstractNeuroimaging has seen a paradigm shift from a formal description of local activity patterns toward studying distributed brain networks. The recently defined framework of the ‘human connectome’ allows to globally analyse parts of the brain and their interconnections. Deep brain stimulation (DBS) is an invasive therapy for patients with severe movement disorders aiming to retune abnormal brain network activity by local high frequency stimulation of the basal ganglia. Beyond clinical utility, DBS represents a powerful research platform to study functional connectomics and the modulation of distributed brain networks in the human brain. We acquired resting-state functional MRI in twenty Parkinson’s disease (PD) patients with subthalamic DBS switched ON and OFF. An age-matched control cohort of fifteen subjects was acquired from an open data repository. DBS lead placement in the subthalamic nucleus (STN) was localized using a state-of-the art pipeline that involved brain shift correction, multispectral image registration and use of a precise subcortical atlas. Based on a realistic 3D model of the electrode and surrounding anatomy, the amount of local impact of DBS was estimated using a finite element method approach. On a global level, average connectivity increases and decreases throughout the brain were estimated by contrasting ON and OFF DBS scans on a voxel-wise graph comprising eight thousand nodes. Local impact of DBS on the sensorimotor STN explained half the variance in global connectivity increases within the sensorimotor network (R = 0.711, p < 0.001). Moreover, local impact of DBS on the motor STN could explain the degree of how much voxel-wise average brain connectivity normalized toward healthy controls (R = 0.713, p < 0.001). Finally, a network based statistics analysis revealed that DBS attenuated specific couplings that are known to be pathological in PD. Namely, coupling between motor thalamus and sensorimotor cortex was increased and striatal coupling with cerebellum, external pallidum and STN was decreased by DBS.Our results show that rs-fMRI may be acquired in DBS ON and OFF conditions on clinical MRI hardware and that data is useful to gain additional insight into how DBS modulates the functional connectome of the human brain. We demonstrate that effective DBS increases overall connectivity in the motor network, normalizes the network profile toward healthy controls and specifically strengthens thalamo-cortical connectivity while reducing striatal control over basal ganglia and cerebellar structures.


2021 ◽  
Author(s):  
kavita singh ◽  
Simone Cauzzo ◽  
Maria Guadalupe Garcia-Gomar ◽  
Matthew Stauder ◽  
Nicola Vanello ◽  
...  

Brainstem nuclei play a pivotal role in many functions, such as arousal and motor control. Nevertheless, the connectivity of arousal and motor brainstem nuclei is understudied in living humans due to the limited sensitivity and spatial resolution of conventional imaging, and to the lack of atlases of these deep tiny regions of the brain. For a holistic comprehension of sleep, arousal and associated motor processes, we investigated in 20 healthy subjects the resting-state functional connectivity of 18 arousal and motor brainstem nuclei in living humans. To do so, we used high spatial-resolution 7 Tesla resting-state fMRI, as well as a recently developed in-vivo probabilistic atlas of these nuclei in stereotactic space. Further, we verified the translatability of our brainstem connectome approach to conventional (e.g. 3 Tesla) fMRI. Arousal brainstem nuclei displayed high interconnectivity, as well as connectivity to the thalamus, hypothalamus, basal forebrain and frontal cortex, in line with animal studies and as expected for arousal regions. Motor brainstem nuclei showed expected connectivity to the cerebellum, basal ganglia and motor cortex, as well as high interconnectivity. Comparison of 3 Tesla to 7 Tesla connectivity results indicated good translatability of our brainstem connectome approach to conventional fMRI, especially for cortical and subcortical (non-brainstem) targets and to a lesser extent for brainstem targets. The functional connectome of 18 arousal and motor brainstem nuclei with the rest of the brain might provide a better understanding of arousal, sleep and accompanying motor function in living humans in health and disease.


2021 ◽  
Author(s):  
Micah Allen ◽  
Somogy Varga ◽  
Detlef H Heck

All living organisms breathe. Respiratory rhythms sustain biological life, governing the homeostatic exchange of oxygen and carbon dioxide. Until recently however, the influence of breathing on the brain has largely been overlooked. Yet new evidence demonstrates that respiratory rhythms exert surprising, substantive influences on perception, emotion, and cognition, largely through the direct modulation of neural oscillations. Here we synthesize these findings to motivate a new predictive coding model of respiratory brain coupling, in which the breath rhythmically enhances both local and global neural gain, to optimize cognitive and affective processing. Our model further explains how respiratory rhythms interact with the topology of the functional connectome, and we highlight key implications for the computational psychiatry of disordered respiratory and interoceptive inference.


Sign in / Sign up

Export Citation Format

Share Document